The GERDA experiment, a search for neutrinoless double beta decay

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Daniel Lenz Max-Planck-Institute for Physics, Munich

on behalf of the GERDA Collaboration

Outline:

- Motivation
- Experimental considerations
- GERDA concept
- Current status
- R&D
- Summary

The GERDA experiment, a search for neutrinoless double beta decay

GERmanium Detector Array

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Daniel Lenz Max-Planck-Institute for Physics, Munich

on behalf of the GERDA Collaboration

Outline:

- Motivation
- Experimental considerations
- GERDA concept
- Current status
- R&D
- Summary

• Neutrinoless double beta decay $(0_{\nu\beta\beta})$ is the only way to unveil the nature of neutrinos

- If $0\nu\beta\beta$ observed:
 - neutrino is Majorana type

• lepton number violation $\Delta L = 2$

• seesaw mechanism
$$m_v = \frac{m_D^2}{M_R} < < m_D$$

- possible to determine absolute neutrino mass scale
- possible to determine neutrino hierarchy

What is $\beta\beta$ Decay

allowed process

observed for several isotopes

effective Majorana neutrino mass:

$$|m_{ee}| = |\sum_{j} m_{j} U_{ej}^{2}|$$
$$|m_{1} \cdot |U_{e1}|^{2} + m_{2} \cdot |U_{e2}|^{2} e^{i(\alpha_{2} - \alpha_{1})} + m_{3} \cdot |U_{e3}|^{2} e^{i(-\alpha_{1} - 2\delta)}$$
$$\mathbf{T}_{1/2} \propto |\mathbf{m}_{ee}|^{-2}$$

- forbidden process in SM, needs Majorana neutrino
- halflife limits available

F. Feruglio, A. Strumia, F. Vissani, NPB 637

Experimental Signature

Halflife Limits

Heidelberg-Moscow experiment:

- 5 enriched Ge p-type crystals
- background index ~0.1 cts/(keV kg y)
- $T_{1/2} \ge 1.9 \cdot 10^{25} \text{ y (90\% C.L.)} 35.5 \text{ kg y}$ Eur. Phys. J. A12, 147-154 (2001)
- part of collaboration claims a signal Mod. Phys. Lett. A16 2409-2420 (2001), NIM A 522 (2004) 371-406

IGEX:

• 3 enriched Ge p-type crystals

• $T_{1/2} \ge 1.57 \cdot 10^{25} \text{ y (90\% C.L.)} 8.87 \text{ kg y}$ NP B (Proc.Suppl.) 87 (2000) 278

Cuoricino: Phys. Rev. C 78 (2008) 035502

- 62 TeO₂ bolometers 40.7kg
- $T_{1/2} \ge 3.0 \cdot 10^{24} \text{ y} (90\% \text{ C.L.})$ 11.83 kg y

Experimental Considerations - Germanium Detectors

$$T_{1/2} \propto const \cdot \epsilon \cdot (M \cdot T / b \cdot \Delta E)^{1/2}$$
 if background

general considerations

Ge detectors

- high Q-value:
 - phase space scales with Q⁵
 - natural radioactivity contribution reduced
- large target mass M; large natural abundance, or enrichment
- high signal effiency ϵ
- low background rate b in ROI crucial! rate := counts/(keV · kg·y)
- **good energy resolution** ΔE to separate $0\nu\beta\beta$ from $(2\nu\beta\beta + other bkg)$

• $Q_{\beta\beta}(^{76}Ge) = 2039 \text{ keV}$

- enrichement in ⁷⁶Ge of 86%
- source = detector
- germanium is one of the purest materials to produce
- excellent energy resolution FWHM(Q_{BB}) < 5keV; $\Delta E/E = 0.2\%$

GERDA Goals

- Phase I: operate existing ⁷⁶Ge detectors from HdM and IGEX + natGe Diodes
 - reach background of 10⁻² cts/(keV kg y)
 - exposure of ~ 15kg y, **check claim**
- **Phase II:** operate new segmented or BEGe ⁷⁶Ge detectors
 - reach background of 10⁻³ cts/(keV kg y) -
 - exposure of ~100kg y \Rightarrow T_{1/2} \ge 1.35 10²⁶ y

Background

Background: processes which cause energy deposition inside ROI

HdM Background Revisit

HdM energy spectrum + simulation

setup:

Main background from natural decay chains from Cu-cryostat and CuPb-shield

GERDA Concept

LNGS:

👕 🗍 3800 m. w. e. rock above 📋

Plastic scintillators on top as muon veto

Watertank: r = 5m, h = 9.0m590m³ ultra-pure water acts as: • n moderator • μ cherenkov veto Cryostat: (copper-lining) r = 2.1m, h = 5m70m³ liquid Argon acts as: shielding medium cooling medium

GERDA Concept

Clean room: Class 10.000

Detector array:

- 3 detectors per string
- up to 16 strings

Active Background Reduction

Expected Background Phase II

- simulation of an array with 21 segmented detectors, 7 strings, each 3 detectors
- simulation carried out with MaGe (MajoranaGerda) GEANT4 based framework
- background including segment anti-coincidence

Part	Background contribution [10 ⁻⁴ counts/(keV·kg·y)]	
Crystal	18	⁶⁸ Ge main source
Holder	3	
Cabling	18	R&D for new cable
Electronics	5	
Muons	~ 0.1	including muon veto
Neutrons	~ 0.1	external n negligible
Total	~ 44	

 More recent, more detailed simulation of realistic array yields comparable values

Current Status - Cryostat & Watertank finished

Watertank and Superstructure August 2008

Current Status - Cleanroom & Cherenkov Veto finished

Clean room May 2009

Current Status - Detectors

Phase I detectors: p-type coaxial detectors

Total of 17.9kg enriched Ge

- well tested procedures for detector handling
- all detectors reprocessed and tested in LAr
- FWHM (1.33MeV) ~ 2.5 keV
- leakage current stable

Enriched Germanium:

 37.5 kg of enriched Ge (86% ⁷⁶Ge) bought by MPI Munich, currently stored underground

Germanium Purification @ PPM Pure Metals:

- no isotopic dilution
- total yield(6N) 88%
- total exposure @ sea level < 3 days / purification

Crystal Growing:

- first natural Ge crystals pulled from 6N material with Czochralski method by the Institut für Kristallzüchtung (IKZ) in Berlin
- impurity density $|N_D N_A| \sim 10^{11} 10^{13} \text{ cm}^{-3}$ (10¹⁰ cm⁻³ needed)
 - main problem is As, needs to be reduced

Detectors:

 first true coaxial, n-type, 3x6 fold segmented, detector with low mass contacting scheme succesfully tested in vacuum

(Abt et al, NIM A 577 (2007) 574)

FWHM(1.33MeV) 3keV, core and segments

suppression factors due to **segment anti**coincidence as estimated from MC

low mass holder, little high-Z material
19g Cu, 7g PTFE, 2.5g Kapton per 1.62kg detector

- second 3x6 fold n-type detector operated in liquid N
- contacting scheme functioning
- cable and component (placement) not optimized for resolution

FWHM(1.33MeV)		
Core:	4-5keV	
Segments: 3.5-6keV		

- operation stable for 5 month
- leakage current 30±5 pA
- test in liquid argon are ongoing

• p-type unsegmented Broad Energy (BE)Ge detector

potential of powerful PSA

- no charge collection inefficency
- BEGe mass production and yield under investigation with Canberra

R&D Pulse Shape Simulation

- needed to fully understand PSA recognition and rejection efficiencies
- gives inside into crystal properties
- helps reconstructing interaction positions
 - input:

impurity density distribution $\rho \Rightarrow \mbox{ EField }$ different for each crystal

crystal axis orientation different for each crystal

drift model for charge carrier same for all crystals

D. Lenz, NDM09 Madison, 08/31-09/05

R&D LArGe (liquid argon scintillation veto)

Summary and Outlook

- Construction started and is ongoing
- Phase I:
 - Phase I detectors refurbished and ready
 - Reach 10⁻² cts/(keV kg y)
 - Test neutrinoless double beta decay claim
- Parallel R&D for **Phase II:**
 - Reach 10⁻³ cts/(keV kg y)
 - Test $T_{1/2} \ge 1.35 \cdot 10^{26} \text{ y}$
 - Rich R&D program
 - n-type segmented detector working in IN2
 - p-type unsegmented detector strong PSA

• Apparatus commissioning will start this year

Summary and Outlook

- Construction started and is ongoing
- Phase I:
 - Phase I detectors refurbished
 - Reach 10⁻² cts/(keV kg y)
 - Test neutrinoless double et. decay claim
- Parallel R&D for
 - Reach 10⁻³ cts/(k //kg y)
 - Test T_{1/2} ≥ 35 10²⁶ y
 - Rich D p gram
 - c segmented detector working in IN2
 - p-type unsegmented detector strong PSA

aratus commissioning will start this year

GERDA Collaboration

- Jagellonian University, Cracow Poland
- Technische Universität Dresden, Germany
- Joint Institute for Nuclear Research, Dubna Russia
- Institute for Reference Materials and Measurements, Geel Belgium
- Max-Planck-Institut für Kernphysik, Heidelberg Germany
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow Russia
- Institute for Theoretical and Experimental Physics, Moscow Russia
- Russian Research Center Kurchatov Insitute, Moscow Russia
- Gran Sasso National Laboratory, Assergi Italy
- Universita Milano Bicocca and INFN, Italy
- Max-Planck-Institut für Physik, Munich Germany
- Universita di Padova and INFN, Italy
- Eberhard Karls University, Tübingen Germany
- University of Zürich, Switzerland

