Search of Neutrinoless Double Beta Decay of ⁷⁶Ge with the GERmanium Detector Array, GERDA

A. Garfagnini

Padova University and INFN

August 20, 2009

Neutrinos

m^2 What we know 1. Mass Scale: m_3^2 m.2 solar~5×10⁻⁵eV m^2 - Δm_{12}^2 and $|\Delta_{13}^2|$ are known; atmospheric ~3×10-3eV2 2. Mixing matrix: U_{ii} characterized by atmospheric m_2^2 ~3×10-3eV2 - three mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$ solar~5×10-5eV2 m.2 m^2 - one Dirac CP phase: δ - two Majorana phases: Φ_2, Φ_3 9 0 0 θ_{12}, θ_{23} measured, upper limits set on θ_{13} Normal hierarchy Inverted hierarchy m,> m,~m, m,~m,>m,

What we do NOT know (yet)

- 1. Absolute Mass Scale (offset);
- 2. Mass Hierarchy $(1 \Rightarrow 2 \Rightarrow 3 \text{ or } 3 \Rightarrow 1 \Rightarrow 2)$
- 3. Neutrino Nature (Majorana or Dirac particle);
- 4. Value of the third mixing angle (θ_{13}) ;
- 5. CP phases (δ, Φ_2, Φ_3) .

Double Beta Decay experiments can address (3) If ν is Majorana's \rightarrow shed light on a combination of (1),(2), (5).

< ロ > < 同 > < 回 > < 回 >

Neutrinos: Majorana versus Dirac particles

- How to test the neutrino mass nature ?
- Experimental problem:

$$P(
u_L
ightarrow
u_R) \sim \left(rac{m_
u}{E_
u}
ight)^2$$

• is vanishing small, $m_v \sim O(eV)$ or smaller ... $E_v \sim O(MeV)$ or bigger.

The only know technique is neutrinoless double beta decay.

A. Garfagnini (Padova Univ, and INFN)

• • • • • • • • • • • •

Double Beta Decays (2ν and 0ν)

2
uetaeta: $(A,Z)
ightarrow (A,Z+2) + 2e^- + 2\overline{
u_e}$

- 2nd order process, observed in many isotopes
- $T_{1/2} \sim 10^{19} 10^{21} y$
- $\Delta L = 0$ for ⁷⁶Ge : $T_{1/2} \sim 1.5 \pm 0.1 \cdot 10^{21} y$

0
uetaeta: $(A,Z)
ightarrow (A,Z+2)+2e^-$

- new physics

-
$$T_{1/2} > 10^{25} y$$

-
$$\Delta L = 2$$

Experimental signature

- peak at $Q_{\beta\beta} = E_{e1} + E_{e2} 2m_e$
- two electrons from vertex
- grand-daughter isotope produced

$$\begin{array}{c} \frac{1}{\tau} = G(Q_{\beta\beta},Z) \left| M_{\textit{nucl}} \right|^2 < m_{ee} >^2 \\ & \uparrow \\ \text{phase space} \\ & \alpha Q_{\beta\beta}^5 \\ & \text{nuclear matrix element} \end{array}$$

A. Garfagnini (Padova Univ, and INFN)

August 20, 2009 4 / 19

Best limits / values on ⁷⁶Ge

• Use Ge as source of $0\nu\beta\beta$ and detector (high signal efficiency).

KKDC - part of HD-Moscow Collab.

- H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198.
- 5 enriched ⁷⁶Ge diodes (71.7 kg·y)
- bck index, B ~ 0.11 cts/(keV · kg · y)
- $T_{1/2}^{0\nu} = (0.69 4.18) \cdot 10^{25} \text{ y}$

IGEX Collab.

- D. Gonzalez et al., NPB (Proc. Suppl.) 87 (2000) 278.
- ⁷⁶Ge enriched diodes (8.87 kg·y)
- bck index, B ~ 0.2 cts/(keV · kg · y)
- $T_{1/2}^{0\nu} > 1.57 \cdot 10^{25} \text{ y} (90\% \text{ CL})$

Confirmation needed with same isotope. Key: reduce background by O(100) for better sensitivity.

A. Garfagnini (Padova Univ, and INFN)

Effective Neutrino Mass

6/19

The GERDA Concept

- Use naked Ge diode submerged in liquid argon
- ✓ LAr as cooling and shielding [G. Heusser, Ann. Rev. Nucl. Part. Sci 45 (1995) 543].
- ✓ minimize surrounding materials.

Phase I

- Use ⁷⁶Ge enr. diodes (HdMo & IGEX)
- Scrutinize KDKC.
 If claim true, expect 13 signal / 3 bck.
 [10 keV window at 2 MeV, 4 keV FWHM]
- Active M: 17.9 kg
- Exposure: ~ 30 kg·y
- bck: 0.01 cts/(keV·kg·y)
- T_{1/2}: 2 · 10²⁵ y

Phase II

- Add new enriched ⁷⁶Ge detectors
- 37.5 kg enriched ⁷⁶Ge available.
- Active M: ≥ 40 kg (yield unknown. R&D on detector technology ongoing)

- Exposure: ~ 100 kg·y
- bck: 0.001 cts/(keV·kg·y)
- T_{1/2}: 15 · 10²⁵ y

Phase III

- a worldwide collaboration for a real big experiment (Exposure $\sim 10^3 \mbox{ kg} \cdot y).$
- Close contacts & MOU with the MAJORANA collaboration established

GERDA sensitivity

 $T_{1/2} \propto \sqrt{M \cdot T/(b \cdot \Delta E)}$

M = Detector mass, T = exposure, b = background index, ΔE = energy resolution.

A. Garfagnini (Padova Univ, and INFN)

August 20, 2009 8 / 19

B > < B >

Background reduction in GERDA

- External bck: γ (Th, U), n, μ
- Shielding is possible

- Intrinsic bck:
 - cosmogenic ⁶⁰Co (5.3 y), ⁶⁸Ge (270 d),
 - radioactive surface contaminations
- Discriminate Single & MultiSite Events:
 - SSE : $\beta\beta$, DEP; MSE : Compton

array of (segmented) Ge detectors

< ロ > < 同 > < 回 > < 回 >

- anti-coincidence of detectors (and of detector segments)
- pulse shape analysis (PSA)

GERDA : designer's view

- designed for external γ, n, μ background ~ 0.0001 cts/(keV·kg·y);
- water vessel : Ø = 10 m;
- LAr cryostat : Ø = 4.2 m;
- 70 m³ of LAr;
- 650 m³ of water;
- up to five Ge diodes arranged in strings, 16 strings in total;

Water:

- moderator for neutrons;
- Čerenkov medium for μ veto;
- cheaper, safer and more effective than LN2 (LAr).

Cryotank and Water Tank constructed

Cryotank (Mar. 2008)

Water Tank (Aug. 2008)

イロト イポト イヨト イヨト

A. Garfagnini (Padova Univ, and INFN)

August 20, 2009 11 / 19

Clean Room and Water Tank PMTs installed

Clean Room (May 2009)

PMT installation inside Water Tank (May 2009)

イロン イ団 とく ヨン ・ ヨン …

A. Garfagnini (Padova Univ, and INFN)

August 20, 2009 12 / 19

э

Phase I detector status

- Running for \sim 1 year with 3 IGEX and 5 HdMo diodes. Mass : 17.9 kg.

Heidelbeg-Moscow & IGEX (before reprocessing)

- All detectors reprocessed and tested in liquid Argon;
- FWHM \sim 2.5 keV at 1332 keV, leakage current stable.

Phase II detector R&D

- 37.5 kg of ^{enr}Ge (86% ⁷⁶Ge) have been procured by MPI-München and are stored underground;
- natural GeO₂ had been reduced to metal and purified to 6N material for Czochralski pulling
- two detector technologies are currently under investigation:
 - segmented Ge detectors;
 - point contact Ge detectors (BEGe);

Phase II : segmented Ge detectors

- First ^{nat}Ge crystals pulled with dedicated puller at Institut f
 ür KristallZüchtung in Berlin (no commercial company found)
- 3×6 -fold segmented prototype detector works fine:
 - > 3 keV resolution at 1.3 MeV obtained for both core and segments
 - ▷ novel low mass contacting scheme verified (I. Abt at al, NIM A577 (2007) 574).
 - ▷ contacts work in LN2, good energy resolution w/o any optimization.

4 3 5 4 3

Phase II : Broad Energy Ge detectors

- Modified electrode detectors :
 - ▷ Luke at al., IEEE TNS 36 (1989).
 - ▷ Barbeau et al., JCAP 09, (2007), 09.
- non-segmented but powerful PSA
- very interesting candidate, mass production under investigation at Canberra.

A. Garfagnini (Padova Univ. and INFN)

Phase II : SSE/MSE Discrimination Examples ²²⁸Th

- BEGe, point-contact \triangleright detector (Canberra)
- fraction after PSA cut

- 3 × 6-fold segmented coaxial detector
- ⇐ fraction after single segment and PSA cut

August 20, 2009

17/19

A. Garfagnini (Padova Univ. and INFN)

Summary and Outlook

- ✓ Approved LNGS experiment in 2005;
 - Construction has started in Hall A;
- ✓ Phase I Ge detectors (8 diodes, ~ 18 kg) refurbished and ready;
- ✓ R&D for GERDA Phase II ongoing (parallel activity)

Next steps

• 2009: complete installation and start apparatus commissioning;

Goals

- Phase I : background level \sim 0.01 cts/(kg·keV·y)
 - scrutinize KKDC result within 1 year after start of background measurement
- Phase II : background level \sim 0.001 cts/(kg·keV·y)
 - $T_{1/2} > 1.5 \cdot 10^{26} \text{ y}, < m_{ee} > < 0.12 \text{ eV}^a$

^awith Nuclear Matrix Elements from Rodin et al.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The GERDA Collaboration

- · Institute for Reference Materials and Measurements, Geel, Belgium
- Institut f
 ür Kernphysik, Universit
 ät K
 öln, Germany
- Max-Planck-Institut f
 ür Kernphysik, Heidelberg, Germany
- Max-Planck-Institut für Physik (Werner-Heisenberg-Insititut), München, Germany
- Physikalisches Institut, Universität Tübingen, Germany
- Institut f
 ür Kern- und Teilchenphysik, Technische Universit
 ät Dresden, Germany
- · Dipartimento di Fisica dell'Univeristà di Padova e INFN Padova, Padova, Italy
- INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
- Università di Milano Bicocca e INFN Milano, Milano, Italy
- · Jagiellonian University, Cracow, Poland
- · Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Institute for Theoretical and Experimental Physics, Moscow, Russia
- · Joint Institute for Nuclear Research, Dubna, Russia
- · Russian Research Center Kurchatov Institute, Moscow, Russia
- University Zurich, Switzerland

