Validation of pulse shape simulation

for segmented germanium detectors

Iris Abt, Allen Caldwell, Daniel Lenz, Jing Liu*, Bela Majorovits

* Jing Liu @ DPG2009, Munich

Introduction

- Pulse shape analysis (PSA):
 - Complementary method to segmentation for identifying background
 - Important to reach background level down to 10⁻³count/(keV•kg•y)
- Pulse shape simulation (PSS):
 - Estimate the efficiency of pulse shape analysis
 - Complicated process: need to be validated!
 - Validation of PSS: understand the detector meanwhile

How to make life easier

Low energy photon source

Surface scanning

Event selection (taking 140° scanning data as an example)

Jing Liu @ DPG2009, Munich

A real pulse seen by the core of the detector

Pulse shape simulation

• One hit at each scanning point

- from 120° to 280°
- right on the outer surface

09.03.2009

Jing Liu @ DPG2009, Munich

A simulated core pulse

Fit simulated pulse to a real one

- real pulse:
 - dots with error bars
 - error is set according to noise

• simulated pulse:

- smooth line
- three free parameters:
 - Amplitude
 - Time scale
 - Time offset

Time scale distribution

Mean time scale distribution along azimuth angle

Possible explanation of the time scale distribution

- Input parameters for physics models
 - Shouldn't change from detector to detector
 - Checked by AGATA collaboration
- impurity density distribution, geometry
 - Change from detector to detector
 - Geometry is simple in our case
 - Inhomogeneous impurity distribution inside detector

How to compare the fine structures

Average out the noise

Fit simulated pulses to averaged pulses

Red: simulated

Black: data

Distribution of hits from 121 keV photons

Hits have a distribution!

Average the simulated pulses as well!

Jing Liu @ DPG2009, Munich

After averaging

Before averaging

Summary

- Pulse shape analysis helps to reject background events
- Pulse shape simulation helps to estimate the efficiency
- Pulse shape simulation must be validated
- Different methods were used to compare simulated pulse to real ones
- Rise time as well as fine structures of the pulses were compared
- Simulation can be very good if corrected
- We have to understand our detector to improve the simulation

Time scale distribution along azimuth angle

