

bmb+**f** - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

CNR*09

BORDEAUX

05-08 October 2009

EBERHARD KARLS

UNIVERSITÄT

TÜBINGEN

Neutron Activation of ⁷⁶Ge

people involved:

P. Grabmayr J. Jochum

- P. Kudejova L. Canella
- J. Jolie

orschungs-Neutronenquelle

Georg Meierhofer

Kepler Center for Astro and Particle Physics University Tübingen

Kepler Center for Astro and Particle Physics

Outline

Motivation: Neutrinoless double beta decay experiments

- Neutrinoless double beta decay
- GERDA experiment

Background in GERDA

- Neutron capture on ⁷⁴Ge and ⁷⁶Ge
- How to reject background
- Measurements with cold neutrons
 - Prompt γ-ray spectrum in ⁷⁵Ge and ⁷⁷Ge
 - Cross section of the 74 Ge(n, γ) and 76 Ge(n, γ) reactions

Summary

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CNR*09 Bordeaux

Double beta decay (2vββ)

Double beta decay $(2\nu\beta\beta)$ can be observed if single beta decay is energetically forbidden, but the transition of two neutrons into two protons (or pp -> nn) is allowed. The nucleus emits two electrons (positrons) and two anti-neutrinos (neutrinos).

2vββ was observed in 11 isotopes: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U, ¹³⁰Ba (β⁺β⁺)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

2vββ decay

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen C

2vββ decay

0vββ decay

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

2vββ decay

0vββ decay

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

GERDA: The GERmanium Detector Array

Isotope: ⁷⁶Ge (Q_{BB} = 2039 keV)

- Phase I: ~18 kg of ⁷⁶Ge
- Phase II: ~40 kg of ⁷⁶Ge

Location: LNGS, Gran Sasso, Italy

Design: Bare HPGe detectors (~86% ⁷⁶Ge) submerged into LAr. LAr acts as cooling liquid and γ-ray shield. Cerenkov muon veto (water tank with Ø=10 m) no high Z-materials used, 3400 m.w.e. of rock to shield cosmic radiation

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Background in GERDA

Radiopurity of: Germanium detector (cosmogenic ⁶⁸Ge) Germanium detector (cosmogenic ⁶⁰Co) Germanium detector (bulk) Germanium detector (surface) Cabling Copper holder Electronics Cryogenic liquid Infrastructure

Sources: Natural activity of rock Muons and neutrons

Total background level in ROI

< 10^{-2} cts/(keV kg y) (Phase I) < 10^{-3} cts/(keV kg y) (Phase II)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Background in GERDA

Radiopurity of: Germanium detector (cosmogenic ⁶⁸Ge) Germanium detector (cosmogenic ⁶⁰Co) Germanium detector (bulk) Germanium detector (surface) Cabling Copper holder Electronics Cryogenic liquid Infrastructure

Sources: Natural activity of rock Muons and neutrons

Muons produce neutrons close to the experiment, the neutrons can propagate undetected through the muon veto to the Ge-diodes and be captured by a ⁷⁴Ge or a ⁷⁶Ge nucleus.

Muonflux @ LNGS: 1 muon/(m² h)

MC-simulations:

~1 n-capture/(kg y)

Limit from previous experiments: max. 6 0vββ-counts in phase I..

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CNR*09 Bordeaux

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CNR*

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

6072

γ-rays can be rejected by pulse shape analysis and/or segmentation of detectors (multi-site events).

 β -particles deposit their energiy in single-site events like $0\nu\beta\beta$ -decay. If β -particles occure together with γ -rays -> multi-site event -> rejection.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

6072

γ-rays can be rejected by pulse shape analysis and/or segmentation of detectors (multi-site events).

 β -particles deposit their energiy in single-site events like $0\nu\beta\beta$ -decay. If β -particles occure together with γ -rays -> multi-site event -> rejection.

This does not work for decays directly to the ground state. 50% of all nuclei undergo this decay! Only "coincidences" with prompt transitions can be used.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Neutron Capture by 74Ge

γ-rays can be rejected by pulse shape analysis and/or segmentation of detectors (multi-site events).

 β -particles deposit their energiy in single-site events like $0\nu\beta\beta$ -decay. If β -particles occure together with γ -rays -> multi-site event -> rejection.

This does not work for decays directly to the ground state. 50% of all nuclei undergo this decay! Only "coincidences" with prompt transitions can be used.

Prompt transitions in ⁷⁷Ge

Nuclear Data Sheets 81

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

PGAA @ FRM II

Beam

~3 x 10⁹ n_{th}/(cm² s¹) < λ_n > = 6.7 Å < E_n > = 1.83 meV

Detectors

2 HPGe with Compton suppresion Li/Cd/Pb shielding

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Prompt γ-spectrum in ⁷⁷Ge

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Decay scheme in ⁷⁷Ge (preliminary)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Decay scheme in ⁷⁵Ge (preliminary)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Cross-section

⁷⁶Ge target was activated together with a gold foil and after irradiation the γ-rays after β-decay were measured by HPGe detectors. The cross-section was calculated relative to ¹⁹⁸Au using the emission probabilities.

77Ge - 367 keV

400

Energy [keV]

800 -

600 -

400 -

200 -

200

250

300

350

Counts

decay spectrum of ⁷⁷Ge

198Au - 411 keV

450

500

550

77Ge - 558 k

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Cross-section results

Evaluating the data one could see that the emission probabilities given in literature are not consistent. Some transitions lead to lower crosssections than those used here. Check needed.

⁷⁶ Ge		
σ(⁷⁷ Ge) direct	$46.9 \pm 4.7 \text{ mb}$	
σ(⁷⁷ Ge)	68.8 ± 3.4 mb	
$\sigma(^{77m}Ge)$	$115 \pm 16 \text{ mb}$	

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Cross-section results

Evaluating the data one could see that the emission probabilities given in literature are not consistent. Some transitions lead to lower crosssections than those used here. Check needed.

⁷⁶ Ge		
σ(⁷⁷ Ge) direct	$46.9 \pm 4.7 \text{ mb}$	
σ(⁷⁷ Ge)	68.8 ± 3.4 mb	
σ(^{77m} Ge)	$115 \pm 16 \text{ mb}$	

⁷⁴ Ge (preliminary)		
$\sigma(^{75}\text{Ge})$ direct	$368 \pm 52 \text{ mb}$	
σ(⁷⁵ Ge)	499 ± 53 mb	
$\sigma(^{75m}Ge)$	$131.4 \pm 6.8 \text{ mb}$	

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Summary

- The knowledge of the prompt spectrum after neutron capture by ⁷⁶Ge is important for background analysis in GERDA.
- The observation of a prompt cascade in GERDA would allow to veto the delayed electrons from β-decay of ⁷⁷Ge

Measurement of the prompt spectrum using PGAA

To predict the background contribution by neutron capture in GERDA the capture cross section has to be known well.

Measurement using the PGAA facility

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CNR*09 Bordeaux

Pulse shape analysis

Figure II-16 Signal traces recorded by FADC (10 ns per point). **Top row:** Voltage pulses from the preamplifier (corresponding to detector charge pulses). **Bottom row:** The same pulses after 50 ns smoothing and 10 ns differentiation (analogous to detector current pulses). **Left column:** A typical candidate for a SSE. **Right column:** A candidate for a multiple-scattered photon induced MSE. Both events had approximately equal energy. The events were recorded from a ²²⁸Th radioactive source.

PhD thesis D. Budjas, Heidelberg 2009

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Prompt γ-spectrum in ⁷⁷Ge

Comparing spectra with different isotopical composition allows to determine unambiguously the transitions in ⁷⁷Ge.

E [keV] (preliminary)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Analysis

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Cross Section

$$\sigma_{Ge}(\lambda) = \frac{A_{Ge} * \left(I_{(Au,\gamma)} * n_{Au}(r) * \boldsymbol{\Phi}(r) \right)}{A_{Au} * \left(I_{(Ge,\gamma)} * n_{Ge}(r) * \boldsymbol{\Phi}(r) \right)} \sigma_{Au}(\lambda)$$

$$\sigma_{0,Ge} = \frac{\left(A_{Ge} * I_{(Au,\gamma)} * n_{Au}\right)}{\left(A_{Au} * I_{(Ge,\gamma)} * n_{Ge}\right)} \sigma_{0,Au}$$

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CNR*09 Bordeaux

What can we lern from 0vββ?

F.Feruglio, A. Strumia, F. Vissani, NPB 637

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

0vββ-Decay

Expected spectrum of 0nββ of ⁷⁶Ge

segmented detector

0vββ event, energy is deposited in a very small volume due to the short range of electrons

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Cross Section

$$\sigma_{Ge}(\lambda) = \frac{A_{Ge} * \left(I_{(Au,\gamma)} * n_{Au}(r) * \boldsymbol{\Phi}(r) \right)}{A_{Au} * \left(I_{(Ge,\gamma)} * n_{Ge}(r) * \boldsymbol{\Phi}(r) \right)} \sigma_{Au}(\lambda)$$

$$\sigma_{0,Ge} = \frac{\left(A_{Ge} * I_{(Au,\gamma)} * n_{Au}\right)}{\left(A_{Au} * I_{(Ge,\gamma)} * n_{Ge}\right)} \sigma_{0,Au}$$

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CNR*09 Bordeaux

~1 n-capture/(kg y) (MC simulation)

 \Rightarrow Possible background in the region of interest (2039 keV)

Source	γ-ray Background in ROI	Rejection method	
Prompt Gamma	Peak?		
Rays	Compton scattering		
β-Decay of ⁷⁷ Ge	Peak (2037.76 keV)		
	Compton scattering		
	(E _{max} =2353.4 keV)		
β-Decay of ⁷⁷ Ge ^m	X	X	
	(E _{max} =1676.5 keV)		
β-Decay of ⁷⁷ As	X	X	Y
	(E _{max} =682.9 keV)		segmented detector

~1 n-capture/(kg y) (MC simulation)

 \Rightarrow Possible background in the region of interest (2039 keV)

Source	γ-ray Background in ROI	Rejection method	
Prompt Gamma	Peak?	multisite	
Rays	Compton scattering	events	
β-Decay of ⁷⁷ Ge	Peak (2037.76 keV)	multisite	
	Compton scattering	events	
	(E _{max} =2353.4 keV)		
β-Decay of ⁷⁷ Ge ^m	X	X	
	(E _{max} =1676.5 keV)		
β-Decay of ⁷⁷ As	X	X	Y
	(E _{max} =682.9 keV)		segmented detect

~1 n-capture/(kg y) (MC simulation)

 \Rightarrow Possible background in the region of interest (2039 keV)

Source	β- Background in ROI	Rejection method	
Prompt Gamma Rays	X	X	- segmented detector
β-Decay of ⁷⁷ Ge	Continuous (E _{max} =2486.5 keV)		
β-Decay of ⁷⁷ Ge ^m	Continuous (E _{max} =2861.7 keV)		
β-Decay of ⁷⁷ As	X (E _{max} =682.9 keV)	X	-

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

~1 n-capture/(kg y) (MC simulation)

 \Rightarrow Possible background in the region of interest (2039 keV)

Source	γ-ray Background in ROI	Rejection method	β- Background in ROI	Rejection method
Prompt Gamma	Peak?	multisite	X	X
Rays	Compton scattering	events		
β-Decay of ⁷⁷ Ge	Peak (2037.76 keV)	multisite	Continuous	
	Compton scattering	events	(E _{max} =24o6 5 keV)	
	(E _{max} =2353.4 keV)			
β-Decay of ⁷⁷ Ge ^m	X	X	Continuous	detection of
	(E _{max} =1676.5 keV)		(E _{max} =2861.7 keV)	prompt gamma rays
β-Decay of ⁷⁷ As	X	X	X	X
	(E _{max} =682.9 keV)		(E _{max} =682.9 keV)	

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

~1 n-capture/(kg y) (MC simulation)

 \Rightarrow Possible background in the region of interest (2039 keV)

Source	γ-ray Background in ROI	Rejection method	β- Background in ROI	Rejection method
Prompt Gamma	Peak?	multisite	X ro wr	X
Rays	Compton scattering	events	me en kn	
β-Decay of ⁷⁷ Ge	Peak (2037.76 keV)	multisite	ft fils	
	Compton scattering	events	colo nte 5 keV)	
	(E _{max} =2353.4 keV)		N red !	
β-Decay of ⁷⁷ Ge ^m	X	X C/	ontinuous	detection of
	(E _{max} =1676.5 keV)	a la	E _{max} =2861.7 keV)	prompt gamma rays
β-Decay of ⁷⁷ As	X	X	X	X
	(E _{max} =682.9 keV)		(E _{max} =682.9 keV)	

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Capture Cross Section of 76(n, γ) in the Literature

	cross section	
	[mbarn]	
σ(⁷⁷ Ge ^g)	Seren (1947): 85 ±17	
	Pomerance (1952): 350 ± 70	
	Brooksbank (1955): 300 ± 60	
	Metosian (1957): 76 ± 15	
	Lyon (1957): 43 ± 2	
σ(⁷⁷ Ge ^m)	Metosian (1957): 87 ± 15	
	Lyon (1957): 137 ± 15	

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen CNR*09 Bordeaux

Cross Section

 $\begin{tabular}{|c|c|c|c|} \hline Our measurement \\ \hline cross section \\ [mbarn] \\ \hline σ($^{77}Ge^g direct$)$ & 46.2 ± 5.5 \\ \hline σ($^{77}Ge^g$)$ & 64.9 ± 3.5 \\ \hline σ($^{77}Ge^m$)$ \\ using IT & 98 ± 12 \\ using β-decay$ & 112 ± 14 \\ \hline \end{tabular}$

Preliminary results:

Particle Physics, University Tübingen

Cross Section

 $\begin{tabular}{|c|c|c|c|} \hline & Our \mbox{ measurement} \\ & cross \mbox{ section} \\ & [mbarn] \\ \hline \sigma(^{77}Ge^g \mbox{ direct}) & 46.2 \pm 5.5 \\ \hline \sigma(^{77}Ge^g) & 64.9 \pm 3.5 \\ \hline \sigma(^{77}Ge^m) \\ & using \mbox{ IT} & 98 \pm 12 \\ & using \mbox{ \beta-decay} & 112 \pm 14 \\ \hline \end{tabular}$

Preliminary results:

Particle Physics, University Tübingen

What can we lern from 0vββ?

If $0v\beta\beta$ is observed:

- Neutrino is a Majorana particle
- Neutrino mass

Mass hierachy (degenerate, inverted or normal)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Cross Section

Preliminary Results:

	Our measurement	Literature
	cross section	cross section
	[mbarn]	[mbarn]
σ(⁷⁷ Ge ^g direct)	46.0 ± 5.0	Lyon (1957): 6 ± 5
σ(⁷⁷ Ge ^g)	64.3 ± 4.4	Seren (1947): 85 ±17 Pomerance (1952): 350 ± 70 Brooksbank (1955): 300 ± 60 Metosian (1957): 76 ± 15 Lyon (1957): 43 ± 2
σ(⁷⁷ Ge ^m) using IT using β-decay	98 ± 12 112 ± 14	Metosian (1957): 87 ± 15 Lyon (1957): 137 ± 15

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen