

Support for GERDA The Shell Model Occupancies in ⁷⁶Ge and ⁷⁶Se and background reactions

Peter Grabmayr

GERDA Collaboration

Eberhard Karls Universität Tübingen Germany

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Kepler Center for Astro and Particle Physics

the mass of the neutrino

Neutrino oscillations:

mass is finite (Suzuki, INPC07) $\Delta m^2_{solar} = 8,2 \ 10^{-5} \ eV^2$ $\Delta m^2_{atm} = 2,7 \ 10^{-3} \ eV^2$

still need:

- absolute mass scale
- hierachy

Tritium β decay Mainz & Troitsk m_e ~ 2,2 eV KATRIN/Mare — 0,2 eV

neutrinoless double beta decay

Aim at support for $2\beta 0\nu$ experiments

$$1/\tau = G(Q) \|M_{nucl}\|^2 < m_{ee} >^2$$

 $G_{\text{experim}} \cdot 1/\tau = G(\zeta)$ Phase space factor (~Q⁵; choose (A,Z))

Nuclear matrix element (theory input) Effective Majorana mass (hierachy)

Content

Aim at support for $2\beta 0\nu$ experiments

$$\frac{1}{\tau} = G(Q) \|M_{nucl}\|^2 < m_{ee} >^2$$

- Tübingen: (⁷⁶Ge, ⁷⁶Se)
- neutron capture identify background veto
 neutron elastic scattering (TÜ+DD)

transfer reactions

nuclear structure for matrix elements

back of the envelope

assume background free; $T_{1/2} >> t$;

neutron capture

2 photon lines: 2041(prompt) & 2037 (delayed) keV close to $Q_{\beta\beta}$ =2039keV 2 experiments: thermal (< meV, FRM-II) & astro (25 keV, FZK)

neutron capture in GERDA

~1 n-capture/(kg y) (MC simulation)

 \Rightarrow Possible background in the region of interest (2039 keV)

Source	γ-ray Background in ROI	Rejection method	β- Background in ROI	Rejection method
Prompt Gamma Rays	Peak? Compton scattering	multisite events	X	X
β-Decay of ⁷⁷ Ge	Peak (2037.76 keV) Compton scattering (E _{max} =2353.4 keV)	multisite events	Continuous (E _{max} =2486.5 keV)	detection of prompt gamma rays
β-Decay of ^{77m} Ge	X (E _{max} =1676.5 keV)	X	Continuous (E _{max} =2861.7 keV)	detection of prompt gamma rays
β-Decay of ⁷⁷ As	X (E _{max} =682.9 keV)	X	X (E _{max} =682.9 keV)	X

the neutron source FRM II

- 7.83 x 10⁹ n/(cm² s¹)
- $<\lambda_n> = 6.7 \text{ Å}$
- <E> = 1.83 meV

P. Grabmayr

the reaction

the reaction

m ~ 300 mg of enriched GeO_2 Irradiation time > 50 000 s

P. Grabmayr

first look at coincidence data

total capture cross section

Trento, 19.Nov. 2008

neutron capture

2 photon lines: 2041(prompt) & 2037 (delayed) keV close to $Q_{\beta\beta}$ 2 experiments: thermal (< meV, FRM-II) & astro (25 keV, FZK)

Content

Aim at support for $2\beta 0\nu$ experiments

$$\frac{1}{\tau} = G(Q) \|M_{nucl}\|^2 < m_{ee} >^2$$

Tübingen: (⁷⁶Ge, ⁷⁶Se)

neutron capture identify background veto neutron elastic scattering (TÜ+DD)

transfer reactions

nuclear structure for matrix elements

ββ-decay in the Shell Model

clarify structure of initial and final nucleus

Trento, 19.Nov. 2008

P. Grabmayr

Trento, 19.Nov. 2008

GERDA

aď

P. Grabmayr

Strawinkel

Strawinkel

(e,e'p) knockout reaction

Trento, 19.Nov. 2008

P. Grabmayr

Independent Shell Model

Independent Shell Model

some sum rules

strength determined in comparison to DWBA $G^{-} = C^{2}S/(2j+1) = N \sigma_{epx}/\sigma_{DWBA}$ parameter dependent full orbital has 2j+1 particles pickup strength $G^{-} = 1$ if orbital is full stripping strength $G^{+} = 1$ if orbital is empty

 $G^+ + G^- = 1$

French & McFarlane Sum Rule independent of DWBA, however all strength must be detected

Trento, 19.Nov. 2008

occupancies

G.Mairle etal, NPA543, NPA455

Trento, 19.Nov. 2008

previous measurement

INVESTIGATION OF THE LEVEL SCHEMES OF ^{73,75,77}As VIA THE (³He, d) REACTION

M. SCHRADER, H. REISS, G. ROSNER and H. V. KLAPDOR Mux-Planck-Institut für Kernphysik, Heidelbarg, Germany

> Received 22 December 1975 (Revised 6 February 1976)

precise relative measurements targets: ⁷⁴Ge,⁷⁶Ge,⁷⁶Se,⁷⁸Se thickness: Rutherford scattering @ 10MeV α reactions: (d,³He) and (³He,d) beam of 80 MeV deuterons & ³He cyclotron @ RCNP, Osaka Gran Raiden solid angle: α-source with solid state detector

wire chamber efficiencies luminosity monitoring with 2nd spectr. LAS polarised deuterons (beam polarimeter) DWBA: use a single parameter set

Trento, 19.Nov. 2008

P. Grabmayr

proton transfer

B.Kay, J. Schiffer, S. Freeman etal

in (³He,d) not the full strength found

neutron vacancies (1-occ.)

PRL 100, 112501 (2008)

PHYSICAL REVIEW LETTERS

week ending 21 MARCH 2008

Nuclear Structure Relevant to Neutrinoless Double β Decay: ⁷⁶Ge and ⁷⁶Se

J.P. Schiffer,^{1,*} S.J. Freeman,² J.A. Clark,³ C. Deibel,³ C. R. Fitzpatrick,² S. Gros,¹ A. Heinz,³ D. Hirata,^{4,5} C. L. Jiang,¹ B.P. Kay,² A. Parikh,³ P. D. Parker,³ K.E. Rehm,¹ A.C. C. Villari,⁴ V. Werner,³ and C. Wrede³

Neutron Vacancy

shell closure @ N=50

Og_{W2}

 Of_{SV2}

1p

 $v(^{76}Se) = 6$

(d,p) (p,d) (α ,³He) (³He, α)

differences in occupancy

A) V.A. Rodin etal NPA766 (2006) 107

B) J. Suhonen and O. Civitarese PLB668 (2008) 277

C) E. Caurier etal PRL 100 (2008) 052503 + A.Poves (priv.comm.)

neutrons

rare event search question of understanding the background

neutron capture

control reactions for interpretation

proton transfer