PANIC 08

8-15 November 2008

GERDA: Study of Neutrinoless Double Beta Decay of Ge-76

Eilat, Israel

Vasily Kornoukhov for the GERDA Collaboration ITEP, INR RAS Moscow

OUTLINE Double Beta Decay Motivation of GERDA Principles of GERDA detector Present status Summary

The GERmanium Detector Array Collaboration

M. Allardt^c, A.M. Bakalvarov¹, M. Balata^a, I. Barabanov^j, M. Barnabe-Heider^f, L. Baudis^q, C. Bauer^f, E. Bellotti^{g,h}, S. Belogurov^{k,j}, S.T. Belyaev^l, A. Bettini^{n,o}, L. Bezrukov^j, V. Brudanin^d, R. Brugnera^{n, ρ}, D. Budjas^f, A. Caldwell^m, C. Cattadori^{g,h}, O. Chkvorets^f, E.V. Demidova^k, A. Denisiv^j, A. Di Vacri^a, A. Domula^c, A. D'Andragora^a, V. Egorov^d, A. Ferella^q, F. Froborg^q, N. Frodyma^b, A. Gangapshev^j, A. Garfagnini^{$n\rho$}, J. Gasparro^e, P. Grabmayr^p, G.Y. Grigoriev^l. K.N. Gusev^{*ld*}, V. Gutentsov^{*j*}, A. Hagen^{*p*}, W. Hampel^{*f*}, M. Heisel^{*f*}, G. Heusser^{*f*}, W. Hofmann^f, M. Hult^e, L.V. Inzhechik^l, J. Janicsko^m, M. Jelen^m, J. Jochum^p, M. Junker^a, M. Kästle^m, J. Kiko^f, S. Kionanovsky^j, I.V. Kirpichnikov^k, A. Klimenko^{d,j}, M. Knapp^p, K-T. Knoepfle^f, O. Kochetov^d, V.N. Kornoukhov^{k,j} V. Kusminov^j, M. Laubenstein^a, V.I. Lebedev^l, D. Lenz^m, M. Lindner^f, I. Lippi^o, J. Liu^m, X. Liu^m, B. Lubsandorzhiev^j, B. Majorovits^m, G. Marissens^e, G. Meierhofer ^p, I. Nemchenok^d, S. Nisi^a, J. Oehm^f, L. Pandola^a, K. Pelczar^b, F. Potenza^a, A. Pulliaⁱ, S. Riboldiⁱ, F. Ritter^p, C. Rossi Alvarez^o, R. Santorelli^q, J. Schreiner^f, J. Schubert^m, U. Schwan^f, B. Schwingenheuer^f, S. Schönert^f, M. Shirchenko^l, H. Simgen^f, A. Smolnikov^{d,j}, L. Stanco^o, F. Stelzer^m, M. Tarka^q, A.V. Tikhomirov¹, C.A. Ur^o, A.A. Vasenko^k, S. Vasiliev^{d,j}, M. Wojcik^b, E. Yanovich^j, S.V. Zhukov¹, F. Zoccaⁱ, K. Zuber^c, and G. Zuzel^f.

People (~95) & Institutes (17)

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ^j) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) Russian Research Center Kurchatov Institute, Moscow, Russia ^m) Max-Planck-Institut f
ür Physik, M
ünchen, Germany ⁿ) Dipartimento di Fisica dell'Università di Padova, Padova, Italy ^o) INFN Padova, Padova, Italy ^p) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany ^q) Physik Institut der Universität Zürich, Zürich, Switzerland

- Questions:
 - Nature of neutrino mass (Dirac or Majorana)?
 - Mass hierarchy (normal, inverse, quasi-degenerate)?
 - Mass scale: a value or an upper limit on m₁?

This information can be obtained from $0v2\beta$ -decay experiments (through measurement of the effective Majorana neutrino mass m_{ee})

$$1/\sqrt{T_{1/2}^{0\nu}} \approx = |\sum_{j=1,2,3} |U_{ej}|^2 e^{i\Phi_j}m_j|$$

 $U_{ej} - PMNS$ unitary neutrino matrix, $\Phi_j - CP - phases$ (*) if a mass mechanism of the $0v2\beta$ -process is dominating

$$T_{1/2}^{0\nu} \geq 4.17 \times 10^{26} \cdot \varepsilon \cdot (a/A) \cdot \sqrt{(M t/B R)}$$

$$m_{\nu} \sim 1/\sqrt{T_{1/2}^{0\nu}}$$

- B background index in cts/(keV kg y)
- R FWHM energy resolution at $Q_{\beta\beta}$ in keV
- A mass number
- \mathcal{E} detection efficiency at $\mathbf{Q}_{\beta\beta}$! "Detector = source"

! Enrichment \rightarrow 100%

- $a \beta\beta$ isotope fraction
- M mass of detector in kg
- T measurement time in years

- Detector = Source
 ↓
 ε ~ 95% efficiency
- Energy resolution R ~ a few keV (3 5 keV) $\downarrow \downarrow$ No $2\nu\beta\beta$ background from 76Ge
- Technology of the production → High purity
 ↓
 No ²³⁸U-, ²³²Th- intrinsic background
- Big scale production of 76Ge isotope: centrifuges

• Fiorini E. et al., 1967: first ^{nat}Ge experiment ($T_{20v} > 3,1.10^{20}$ yr). ^{nat}Ge(Li): m = 0.09 kg, R = 4,7 keV at 1,32 MeV, 1973, ($T_{20v} > 5.10^{21}$ yr). ^{nat}Ge(Li): m = 0.36 kg, R = 6 keV, BI = 38 keV^{-1*}kg^{-1*}yr⁻¹

 Caldwell D.O. et al., 1986: ^{nat}Ge diodes (T_{2ov} > 2,5.10²³ yr) m = 3,5 kg, R = 3.7 keV, BI = 0.35 keV^{-1*}kg^{-1*}yr⁻¹ (with Nal)
 ITEP group (Kirpichnikov et al.) 1987- 89:

first ⁷⁶Ge experiment ($T_{20v} > 2.10^{24}$ yr) two ⁷⁶Ge(Li) crystals (m = 1.14 kg), R = 3.7 keV, BI = 2.6 keV^{-1*}kg^{-1*}yr⁻¹ (with Nal)

*) For references see at the end of the presentation

HD and IGEX ⁷⁶Ge 0νββ experiments

IGEX experiment:

C. Aalseth et al., Phys. Rev. D 65, 092007 T_{1/2} > 1.6 10²⁵ y (90% C.L.) 8.5 kg*yr, BI ~ 0.1 cts/(keV·kg·yr) with PSA

Heidelberg-Moscow experiment:

 $T_{1/2} > 1.9 \ 10^{25} \ y \ (90\% \ C.L.)$ 71.7 kg*yr BI = 0.11 cts/(keV·kg·yr) before PSA H.V.Klapdor-Kleingrothaus et al., Phys.Lett. B586 (2004) 198. Claim: T_{1/2} = (0.7 - 4.2) \cdot 10^{25} \ y \ (3\sigma) $m_{v} \sim 0.24 - 0.58 \ eV$

Confirmation needed with same & different isotopes!

External background (main source now):

- * γ-rays from the rock, shielding material and detector supporting material;
- neutrons from fission, (α,n)-reactions in rock and µ-induced reactions in rock and shielding material;
 muons from cosmic rays showers

Intrinsic background:

* cosmogenic isotopes (Ge-68, Co-60) due to spallation reactions on Ge isotopes at sea level ($T_{1/2} \sim$ year)

Reduction of bkg-index by two orders of magnitude to 10⁻³ cts/kg/keV/yr + increase of ⁷⁶Ge mass:

- •Removal of materials around crystal naked HPGe detectors (proposed by G.Heusser (Ann.Rev.Nucl.Part.Sci. 45 (1995)543))
- •Use of highly enriched Ge (87%)
- •Use of (water + liquid argon) for passive shielding
- •Use of muons veto (Cherenkov + plastic scintillator)
- •Use of liquid argon for active shielding (option*)
- •Use for Phase II <u>highly segmented</u> or <u>point-like p-type</u> detectors
 •Improvement of Pulse Shape Analysis

Most dangerous TI-208 of Th-232 chain Eγ = 2,615 MeV

- Activity of TI-208, mBq/kg:
- Rock, concrete ~ 3000 Stainless steel< 5</td>Cu(OFHC)< 0.02</td>Water purified< 0.001</td>LAr ~ 0
- Principle of "Russian MATRESHKA" except that last girl (Ge crystals) is naked

GERDA s/steel cryostat

Water tank and muon veto

- •Water serves as passive shield (reduces amount of LAr)
- •Filled with pure water of 590 m³
- •Layer of reflector film VM2000
- 66 PMTs ETL 9350 KB:
 Cherenkov detector
- 20 panels of plastic scintillator on top (S = 20 m³, Δ = 3 cm)

BI (muons) = 10⁻⁴ evts/keV/kg/y

PHASE I: 17.9 kg of enriched ⁷⁶Ge (from HM and IGEX)

1 year data if B=10⁻² cts/(keV·kg·yr) (<u>check of Klapdor's claim</u>)

Start in 2009 at Gran Sasso, results 2010

 $T_{1/2} > 3 \ 10^{25} \ yr$ $< m_v > < 270 \ meV$

PHASE II: 40 kg of enriched ⁷⁶Ge (20 kg segmented or point like HPGe detectors)

if B=10⁻³ cts/(keV·kg·yr) $T_{1/2} > 1.5 \ 10^{26}$ yr for 3 yr*35 kg of data taking

<m_v> < 110 meV

PHASE III: if PHASE I and II succeed

then world-wide ~ 1 ton experiment with MAJORANA

 $< m_{v} > < 10 - 20 \text{ meV}$

GERDA sensitivity: dependence on Bkg

Assumed energy resolution:

 $\Delta E = 4 \text{ keV}$

Background reduction !

Situation of GERDA

GERDA at underground laboratory Gran-Sasso (Italy)

GERDA at underground laboratory Gran-Sasso (August 2007)

Buttom part of the GERDA

GERDA at underground laboratory Gran-Sasso (6 March, 2008)

Erection of the cryostat

GERDA at underground laboratory Gran-Sasso (6 March, 2008)

GERDA at underground laboratory Gran-Sasso (12 June, 2008)

Construction of water tank

GERDA at underground laboratory Gran-Sasso (18 July, 2008)

GERDA building construction

GERDA at underground laboratory Gran-Sasso (18 July, 2008)

GERDA building construction

Phase I diodes

- 17.9 kg enriched (IGEX and HdM) and 15 kg non-enriched crystals (GENIUS-TF)
- All diodes were refurbished by Canberra
- Low-mass holder for each diode
- Storage underground during reprocessing (HADES), less than 1 week exposure above ground
- Storage at LNGS under vacuum in special transport container

GERDA Detector Lab (GDL) at Gran Sasso

Testing of naked detectors at LAr (Gran Sasso)

1) Definition of naked detector handling protocol

2) Long-term stability tests (3 HPGe detectors in LN2/LAr during 2 years):
 Depletion voltage
 I/V curve
 energy resolution

3) Problems reported from GENIUS-Test Facility* have been overcome by GERDA.
 No deterioration after > 1 year of operation at LAr !

(*) H.V.Klapdor-Kleingrothaus end I.Krivosheina, NIM A556 (2006) 472.

- Sept 2005: 37.5 kg ⁷⁶Ge produced in Russia
 - ~87% ⁷⁶Ge enrichment, 0.015% of ⁷⁰Ge depletion
 - Chemical purity: 99.95 % or 4N
- 50 kg of ^{dep}GeO₂ the same quality for testing
- Investigation of different options for the material purification and crystals pulling at PPM Pure Metals and the IKZ (Germany))
- Underground storage (HADES, Belgium and Langelsheim, Germany) until and during further processing steps (crystal pulling and detector fabrication)
- Development of true-axial segmented n-type or p-type point-like contact detector (BEGe detector)

Collection of GeCl₄

Centrifuge hall

Munich, March 2005

Rally Siberia – Munich is over: ⁷⁶GeO₂ is in MPI fuer Physik

Refurbishing of CZ crystall puller at IKZ

- Inductive heating with silver coils
- Molybdenum susceptor
- 4" and 6" ultra high purity crucible made of quartz
- System of pure forming gas (Ar + H₂)

EKZ 2000 LEYBOLD

Phase II 18-fold segmented n-type detector

Copper hold for Phase II: 31 g Cu7 g Teflon

Low mass contacts (Cu on Kapton): 2.5 g Kapton cable (+ Cu)

First successful operation of segmented n-type HPGe detector in LN (during 5 months)

Phase II Broad-energy Ge-detector

- covers energy range 3 keV 3 MeV
- enhanced efficiency for low-energy gammas
- low capacitance (\Rightarrow low noise)

BEGe vs. 18-fold segmented HPGe

comparison of discrimination power for ²²⁸Th spectrum

BEGe point-contact

Fractions remaining after PSA cut:

ROI Q _{BB}	49.06% ± 0.40%
2.61 MeV	13.19% ± 0.06%
1.62 MeV	13.20% ± 0.45%
DEP	91.01% ± 0.62%

18-fold segmented coax

Fractions remaining after combined single-segment and PSA cut:

48.10% ± 1.12%
14.57% ± 0.31%
18.98% ± 0.39%
81.93% ± 2.22%

(PSA data without Compton background subtraction)

SSE/MSE discrimination with BEGe comparable to 18-fold segmented detector

- $0\nu 2\beta$ - decay is identified as one of the top priority topics in particle physics for the next 10÷20 years.

•The experiments based on ⁷⁶Ge diodes are the most promising ones for investigation of $0\nu 2\beta$ - process.

 The GERDA experiment is designed as the nextgeneration 0v2β -decay ⁷⁶Ge experiment with sensitivity:
 > 3*10²⁵ yr for Phase I

- > 1.5*10²⁶ yr for Phase II
- > the future world-wide ~ 1 t experiment $< m_{ee} > ~ 10$ meV.

•Commissioning of GERDA and start of the experiment in 2009.

Backup slides

Schedule

- •June 2007: GERDA setup officially approved by LNGS
- •All Phase I detectors (8 pieces) refurbished&ready to use
- •Meanwhile: Detector prototype testing in LN2 ongoing
- •Cryostat has been mounted in March 2008 and successfully tested
- •Water tank constraction has been completed in June 2008
- •Hydrostatic and fast draining tests will be done soon
- Construction of lab building has been completed
- •Next: cleanroom and lock (~ till Spring 2009)
- Muon Veto (Cherenkov and Plast Scintillators) after WT testing
- •Filling with LAr and Commissioning of GERDA Spring 2009
 - Commissioning of GERDA and start of the experiment in 2009

References to slide #6

- 1. E.Fiorini et al., Phys.Lett. 25B, N. 10, 27 November 1967, pp. 602-603.
- 2. D.O.Caldwell et al., Phys. Rev. D, Vol. 33, N. 9, 1 May 1986, 2737-2739.
- 3. D.O.Caldwell et al., Phys.Rev.Lett. Vol.59, N. 4, 27 July 1987, 419-422.
- 4. A.A.Vasenko, I.V.Kirpichnikov et al., Modern Phys. Lett. A, Vol. 5, N. 17 (1990) 1299-1306.

Best results on 0νββ search

Isotope	T _{1/2} , yr	<m<sub>v>, eV QRPA'07</m<sub>	<m<sub>√>, eV SM'07</m<sub>	Experiment
⁷⁶ Ge	> $1.9 \cdot 10^{25}$	< 0.22-0.41 ~ 0.28-0.52 (2)	< 0.69	
	≈ 2.2·10 ²⁵ (?)	≈ 0.21-0.38(?)	≈ 0.64(?)	KK of HM'06
	> 1.6·10 ²⁵	<0.24-0.44	< 0.75	IGEX
¹³⁰ Te	>3.1·10 ²⁴	< 0.34-0.57	< 0.75	CUORICINO
¹⁰⁰ Mo	>5.8·10 ²³	< 0.81-1.28	-	NEMO
¹³⁶ Xe	>4.5·10 ²³	< 1.41-2.67	< 2.2	DAMA
⁸² Se	>2.1·10 ²³	< 1.40-2.17	< 3.4	NEMO
¹¹⁶ Cd	>1.7·10 ²³	< 1.45-2.76	< 1.8	SOLOTVINO

Internal background reduction: segmented detector

Photon – β- particle discrimination

- $\beta\beta$ -signal: local energy deposition single site event, SSE
- γ -background: several compton scatterings multi site event, MSE
 Signal: Background (⁶⁰Co):

Anti-coincidence between segments suppr. factor ~10

Puls shape analysis suppr. factor ~2

Pulse-shape analysis: BEG-detector

TFA parameters: 10 ns integration, 10 ns differentiation

GERDA & Mass hierarchy sensitivity

Underground storage of depGeO2 in Langelsheim municipal mining museum

 a) Reduction procedure depGeO2 → depGe Technical grade (99,8%)
 No isotope dilution effect was detected Yield = 98,5%

b) Three steps zone refinement depGe \rightarrow depGe 99,8% \rightarrow 6N ($\rho \ge 50$ Ohm*cm) 10¹³ cm⁻³ \rightarrow 10¹¹ cm⁻³ Yield = 91%

Unrecoverable loss is 0.4%. Total yield of 6N material was 88% Total exposure of the material at sea level < 2-3 days/purification

- Resistivity measurements at RT, Ohm*cm
- Hall effect measurements at 77 K:
 - $> |N_{D}-N_{A}| \sim 10^{11} \div 10^{13} \text{ cm}^{-3} \text{ (detector grade } \sim 10^{10} \text{ cm}^{-3} \text{)}$
 - Mobility at RT and 77K
- PTIS (Photo Thermal Ionization Spectroscopy) measurements
 - Identification of donors and acceptors
- Optical measurements:

> Dislocation density (~ $10^2 - 10^4 \text{ cm}^{-2}$)

- Photoluminescence measurement (Dresden):
 - Identification of donors and acceptors (As and P, no Al and B)

Liquid Argon scintillation

MC simulation: Background suppression for contaminations located in detector support:

Test facility MiniLArGe at MPIK

Low background test stand LArGe (Heidelberg, Gran Sasso)

Cryostat:

Inner diameter: 90 cm Volume: 1000 liter (under construction)

PMT: 9 x 8" ETL9357 (delivered)

Shield:

Cu 15 cm Pb 10 cm Steel 23 cm PE 20 cm (in place)

Lock: Construction completed

Can house up to 3 Phase 1 strings (9 Ge detectors)

