

Status of the GERDA experiment

Béla Majorovits for the GERDA collaboration

A.M. Bakalyarov^j, M. Balata^a, I. Barabanov^h, M. Barnabe-Heider^f, L. Baudisⁿ, C. Bauer^f, E. Bellotti^{a,g}, S. Belogurov^{h,i}, S.T. Belvaev^j, A. Bettini^l, L. Bezrukov^h. V. Brudanin^d, R. Brugnera^l, D. Budjas^f, A. Caldwell^k, C. Cattadori^{a,g}, M.V. Chirchenko^{d,j}, O. Chkvorets^f, E.V. Demidovaⁱ, A. Denisiv^h, A. Di Vacri^a, A. D'Andragora^{*a*}, V. Egorov^{*d*}, A. Ferella^{*n*}, F. Froborg^{*n*}, A. Gangapshev^{*h*}. A. Garfagnini¹, J. Gasparro^e, P. Grabmavr^m, G.Y. Grigoriev^j, K.N. Gusev^j, V. Gutentsov^h, W. Hampel^f, M. Heisel^f, G. Heusser^f, W. Hofmann^f, M. Hult^e, L.V. Inzhechik^j, J. Janicsko^k, M. Jelen^k, J. Jochum^m, M. Junker^a, J. Kiko^f, S. Kionanovsky^h, I.V. Kirpichnikovⁱ, A. Klimenko^{d,h}, M. Knapp^m, K-T. Knoepfle^f O. Kochetov^d, V.N. Kornoukhov^{h,i}, V. Kusminov^h, M. Laubenstein^a, V.I. Lebedev^j, M. Lindner^f, J. Liu^k, X. Liu^k, B. Lubsandorzhiev^h, B. Majorovits^k, G. Marissens^e. G. Meierhofer^m, I. Nemchenok^d, S. Nisi^a, J. Oehm^f, L. Pandola^a, P. Peiffer^f, F. Potenza^{*a*}, A. Pullia^{*g*}, S. Riboldi^{*g*}, F. Ritter^{*m*}, C. Rossi Alvarez^{*l*}, V. Sandukovsky^{*d*}, J. Schreiner^f, J. Schubert^k, U. Schwan^f, B. Schwingenheuer^f, S. Schönert^f, M. Shirchenko^j, H. Simgen^f, A. Smolnikov^{d,h}, L. Stanco^l, -IN F. Stelzer^k, V. Sugonyaev^l, A.V. Tikhomirov^j, C.A. Ur^l, A.A. Vasenkoⁱ, S. Vasiliev^{d,h}, M. Wojcik^b, E. Yanovich^h, J. Yurkowski^d, S.V. Zhukov^j, F. Zocca^g, K. Zuber^c, G. Zuzel^f.

^a INFN Laboratori Nazionali del Gran Sasso LNGS, Assergi, Italy
^b Institute of Physics, Jagellonian University, Cracow, Poland
^c Institut für Kern- und Teilchenphysik Technische Universität Dresden, Dresden, Germany
^d Joint Institute for Nuclear Research, Dubna, Russia
^e Institute for Reference Materials and Measurements, Geel, Belgium
^f Max Planck Institut für Kernphysik, Heidelberg, Germany
^g Università di Milano Bicocca e INFN Milano, Milano, Italy
^h Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
ⁱ Institute for Theoretical and Experimental Physics, Moscow, Russia
ⁱ Russian Research Center Kurchatov Institute, Moscow, Russia
^k Max-Planck-Institut für Physik, München, Germany
^l Dipartimento di Fisica dell'Università di Padova e INFN Padova, Padova, Italy
^m Physik Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
ⁿ Physik Institut der Universität Zürich, Zürich, Switzerland

- Neutrinos: a piece of the cake
- Neutrinoless Double Beta Decay
- 0vbb with HPGe detectors
- The principle of the GERDA experiment
- Present status

Max-Planck-Institut für Physil Werne-Heancheng-Institut

Béla Majorovits

Neutrinos in the Universe

- •Relic from Big Bang:
- •Neutrinos from the sun at earth:
- •Neutrinos from 1GW nuclear reactors:
- •Supernova Neutrinos:

100 cm⁻³ 6•10¹⁰ cm⁻²s⁻¹ 6•10¹¹ cm⁻²s⁻¹ in 100m distance Up to 10⁵⁸ emitted within 10s

Neutrinos are nearly as abundant in our universe as photons!

 \rightarrow Even a small rest mass has large cosmological influence!

→Not the whole of Dark Matter, but non negligible contribution

Neutrino Mass Hierarchy

Neutrino-oscillation experiments have taught us: Neutrinos must have a non vanishing rest mass!

We only have information on the squared mass difference between the eigenstates

- →Absolute mass scale still unknown
- We do not know the sign of Δm_{32}
- \rightarrow Mass hierarchy is still unknown

Are Neutrinos their own Antiparticles, ie Majorana particles?

→ Nature of the Neutrinos still unknow

Neutrinoless Double Beta-Decay

- Double Beta-Decay is an allowed 2nd order weak process
- It's half life is of the order (the age of the universe)² $\sim 10^{20}$ years
- If Neutrinos are massive and their own anti-particles, ie Majorana particles, the process could occur without the emission of Neutrinos

Neutrinoless Double Beta-Decay

- Double Beta-Decay is an allowed 2nd order weak process
- It's half life is of the order 10¹⁰ times the age of the universe
- If Neutrinos are massive and their own anti-particles, ie Majorana particles, the process could occur without the emission of Neutrinos

Neutrinoless Double Beta-Decay

- Double Beta-Decay is an allowed 2nd order weak process
- It's half life is of the order 10¹⁰ times the age of the universe
- If Neutrinos are massive and their own anti-particles, ie Majorana particles, the process could occur without the emission of Neutrinos

Neutrinoless Double Beta-Decay and the Mass Hierarchy

<m > [eV] 1 K.K. Claim 90% eneracy CI F.Feruglio et al., Nucl. 10^{-1} Phys. B 637(2002) In order to discriminate $\Delta m_{32} \leq 0 \text{ eV}$ between normal and dis inverted hierarchy, we need 10^{-2} avoured by cosmolog an experiment with $\Delta m_{32} > 0 \text{ eV}$ sensitivity down to 10 meV ! 10^{-3} 90% CL (1 dof)

 10^{-4}

 10^{-4}

 10^{-3}

 10^{-2}

 10^{-1}

Lightest neutrino mass [eV]

Sensitivity of 0vββ-experiments

Figure of merit for a limit sensitivity for experiment with background:

The parameter measured in neutrinoless double beta decay experiments is its half-life.

$$T_{1/2} \propto a \epsilon \sqrt{\frac{m t}{b \delta E}} \cdot M_{nucl}$$

active target mass of the experiment	Increase target mass		
background rate of the experiment	Minimize and select material		
enrichment of isotope under consideration (< 1.0)	Use isotope with high natural abundance or enrich material		
signal detection efficiency (<1.0)	Source =! Detector		
Energy resolution	Use high resolution spectroscopy		
Measuring time (< 20y)	Stable experiment with high duty cycle		
Nuclear Matrix Element	Pester theoretical nuclear physicist		
	active target mass of the experimentbackground rate of the experimentenrichment of isotope under consideration (< 1.0)signal detection efficiency (<1.0)Energy resolutionMeasuring time (< 20y)Nuclear Matrix Element		

High Purity Germanium detectors:

Very good energy resolution	Background due to 2νββ decay negligible
Source = Detector	High signal detection efficiency (95%)
Very high purity of detector material (zone refinement)	Very low intrinsic background
Considerable experience	Well known and reliable, improvements possible
Low Q-value: 2.04 MeV	Background reduction!
Natural abundance of ⁷⁶ Ge 7,44%	Enrichment necessary!

Max-Planck-Institut für Physik

Béla Majorovits

Results from HPGe experiments

Heidelberg-Moscow Experiment:

- 11.5 kg of enriched Ge detectors
- 71.7 kg yrs of data
- 0.11 Counts/(kg keV y) around 2040 keV
- → Upper limit:

T_{1/2}≥1.9 * 10²⁵ years (90% C.L.)

 \rightarrow <m_{ee}> = 440 meV (KK matrix el.)

IGEX Experiment:

- 6.8 kg of enriched Ge detectors
- 8.5 kg yrs of data
- 0.17 Counts/(kg keV y) around 2040 keV
- → Upper limit:

T_{1/2}≥1.6 * 10²⁵ years (90% C.L.)

GERmanium Detector Array: GERDA

Increase sensitivity in order to confirm or refute the claim

→ Reduce bkg-index by at least two orders of magnitude to 10⁻³ Cts/(kg keV year)

→ Increase target mass

The principle idea of the GERDA experiment:

Use the cryo-liquid as cooling medium and shield simultaneously:

- → Radioactive background can be drastically reduced
 - LN and LAr can be produced with very high purity
 - Material of conventional cryostat is removed from detector surrounding G. Heusser, Ann. Rev. Nucl. Part.

G. Heusser, Ann. Rev. Nucl. P Sci. 45(1995)543

Status of the GERDA Experiment

GERmanium Detector Array: GERDA

≻Place array of naked HPGe-detectors enriched in ⁷⁶Ge in the center of a stainless cryostat filled with LAr.

IDM 2008, Stockholm, 2008. Aug. 21

Béla Majorovits 🥝

GERmanium Detector Array: GERDA

>Place array of naked HPGe-detectors enriched in ⁷⁶Ge in the center of a stainless cryostat filled with LAr.

IDM 2008, Stockholm, 2008. Aug. 21

Béla Majorovits

Status of the GERDA Experiment

GERmanium Detector Array: GERDA

Surround the whole setup with water tank to shield against external gammas, neutrons and muons (water Cerenkov)

IDM 2008, Stockholm, 2008. Aug. 21

Béla Majorovits

Status of the GERDA Experiment

IDM 2008, Stockholm, 2008. Aug. 21

GERmanium Detector Array: GERDA

	Phase I	Phase II	
Target mass of enriched material [kg]	18 kg from Hd-Mo and IGEX detectors	Additional 20 kg	
Envisioned	0.01	0.001	
background ([Counts/(kg keV y)] ((limited by cosmogenic ⁶⁰ Co)	(improvement by segmentation and further material selections)	
Exposure	15 kg y	100 kg y	
	Confirm or refute claim	Push sensitivity, prove low background capability of technique	
		Discov. potential: T _{1/2} ≈5 •10 ²⁵ yrs,	
		Limit setting: to 1.5 • 10 ²⁶ yrs.	
		For Rodin et al. matrix element, mass sensitivity about 120 meV	

Phase I Detectors:

- Acquired HdMo and IGEX detectors
- Constructed detector holder out of low level materials
- Detectors refurbrished by Canberra
- All detectors back at Gran Sasso since July 2008. Only a few days of exposure at sea level
- More than one year running experience with naked HPGe detectors inside LAr.

Phase II: Segmentation of detectors

Germanium detectors can be segmented

→ Multiple Compton scattered photons can be itentified as background

(Mean free path of a 2 MeV gamma in Ge ~ few cm)

Signal:

Background:

Nominal design for phase II detectors: 18 fold

segmentation: 3-fold in height, 6-fold in ϕ

Phase II detector production:

Germanium dioxide reduced to metal bars and purified to 6N material for Czochralski pulling

No impurities detected with ICPMS measurements

First Germanium crystals pulled with dedicated Czochralski puller at IKZ in Berlin. Charge carrier density at first try: 10⁻¹¹ cm⁻³ to 10⁻¹³ cm⁻³ (requ.: 10⁻¹⁰ cm⁻³)

Phase II: Detector development

Designed and tested low mass copper holder for phase II detectors: 31g Cu, 7g Teflon

Developed low mass contacting scheme with Cu on Kapton (to be replace by electropure material). 2.5 g Kapton cable (incl. Cu) Béla Majorovits

Phase II: Detector development

Energy [keV]

Contacting technique works in cryogenic liquid: Reasonable energy resolution Stable operation since three months in liquid nitrogen! No change in leakage current observed!

→ First successful operation of segmented n-type HPGe detector in cryoliquid!

6th of March 2008

6th of March 2008

6th of March 2008

6th of March 2008

Installation of Water Tank completed

8th of May 2008

Status of the GERDA Experiment

Installation of Water Tank completed

Installation of Superstructure ongoing

- Clean Room installation will start end of this year.
- Lock system: Mechanical infrastructure for deployment of detectors into the cryostat scheduled for early next year.

GERDA sensitivity

- 1. We will confirm or rule out the Klapdor-Kleingrothaus et al. claim (Phase I)
- 2. If not confirmed and background reduction to the level 10⁻³/(kg yr keV) demonstrated (Phase II), go for
- 3. Phase III (ca. 1 ton, 10 meV level) for distinction of hierarchies!

GERDA

Conclusions:

- Measurement of 0vββ has very high priority.
- HPGe experiments have very high discovery potential.
- The GERDA experiment will use new technique of using naked HPGe detectors in cryo liquid.
- Sensitivity of GERDA Phase I will be sufficient to confirm or refute claim.
- GERDA phase II will further improve limits in case of a negative result and prove low background capability for ton scale experiment
- GERDA infrastructure is coming together.
- World wide effort needed to probe <m_{ee}> down to 10 *meV*.

Estimated Background for Phase II:

Part	Comp.	Contrib. [10 ⁻⁴ Cts /(kg keV y)]	Assumption	Means of reduction
Detector	⁶⁸ Ge	4.3	2y underground	Wait, produce
	⁶⁰ Co	0.3		underground
	Bulk	3.0	Upper limit	
	Surf.	3.5	Upper limit	PSA
Holder	Cu	1.4		Use e-formed Cu
	Teflon	0.3		
Cu+Kapton Cabling	XX-0-/	1.5	2mBq/kg Kapton	PEN cables
Electronics		3.5	10g 100mBq/kg	ASICs, outside
Liquid argon		1.0		
Infrastructure		0.2		
Muons and neutrons		1.0		Go deeper
Total		21.0		R & D

¶Δ_P Δ_g≥j± Max-Planck-Institut für Physik

Max-Planck-Institut für Physik

Phase II: Results with prototype detectors:

Max-Planck-Institut für Physik

Phase II: Results with prototype detectors:

Aimed GERDA sensitivity:

Phase I: ~7 signal events and ~2 background events are expected after ~1 year of measuring time in a 10 keV signal window around 2040 keV in case of confirmation of claim.

Béla Majorovits 🥘

Prototype detector pulse shapes:

¶∆⊧∆g≥f£ Max-Planck-Institut für Physik

Phase II: Detector transport

Novel detector transport system : The GERDA detectors travel just as safely as your kids without losing their aroma!

