

Operation of Bare Ge detectors in liquid argon for the GERDA experiment

<u>M. Barnabé Heider</u>, C. Cattadori, A. Di Vacri, O.Chkvorets, K.Gusev, S.Schönert, M.Shirchenko

Outline

- GERDA Phase I detector assembly
- Test bench of GERDA Detector Laboratory
- Operation of bare HPGe detectors in LN_2/LAr
 - Study of leakage current (LC) under varying γ irradiation conditions
 - Long term stability measurement
- Status of the Phase I detectors

GERmanium Detector Array for the search of neutrinoless $\beta\beta$ decays of ^{76}Ge

- Operation of <u>bare</u> enriched <u>HPGe</u> detectors in <u>LAr</u>
 - Extremely low background
 Excellent energy resolution
- Phase I
 - Enriched ⁷⁶Ge (86 %)
 - Reprocessed HDM (5) and IGEX (3) detectors: 17.9 kg
 - Non enriched Ge
 - Reprocessed Genius-TF detectors (6): 15 kg

Phase I detectors operated in LAr

Non-enriched HPGe dectector Prototype 1

- Same technology as Phase I detectors
- To test
 - Phase I detector assembly
 - Detector handling
 - (> 45 cooling/warming cycles)
 - Spectroscopy performance
 - Detector stability in LAr/LN_2

Phase I low mass holder: Cu, PTFE, silicon

Same resolution as obtained in a test cryostat!

GERDA Detector underground Laboratory, LNGS

To test Phase I detectors

- Clean room level 10 000
- Clean benches level 10
- •2 x detector test benches
 - 70 | Dewar
 - LAr and/or LN_2
 - Resolution ~3 keV FWHM
- •4 x different detectors tested DPG, F

DPG, Freiburg, March 2008

I-R shield

Leakage current (LC) in response to long-term γ irradiation

γ radiation-induced increase of LC in LAr

- γ irradiation in liquid argon results in an increase of LC (~ 10 pA/day)
- 2) γ radiation-induced LC is partly reversible by irradiation without HV
- 3) LC increase is stronger when the γ source irradiates the groove side of the detector assembly
- 4) γ radiation-induced increasing rate of the LC is stronger with -HV

Most likely explanation: Charge collected on passivation layer

 Collection of +/charges changes conductivity of passivation layer

E field numerical computation

+ (-) charges collected on the inner (outer) part of the passivation layer

 γ radiation-induced decrease of LC: UV light from LAr scintillation

Long-term stability (7 months)

Irradiations using others diodes with different passivation layers

γ radiation-induced increase of LC

DPG, Freiburg, March 2008

Summary 1

- 2 years of operation with bare HPGe detector in LN_2/LAr
 - Phase I detector assembly tested successfully (2.2 keV / 3 keV FWHM)
 - Detector handling protocol defined (> 45 warming and cooling cycles)
 - Detector parameter stable over long-term measurement
- After 1 year of continuous operation in LAr
 - Detector parameters **not** deteriorated $(10pA \rightarrow 10pA)$

Summary 2

- 1 year study with prototype continuously operated in LAr under varying γ irradiation conditions
 - $\boldsymbol{\cdot}\boldsymbol{\gamma}$ irradiation results in an increase of the LC
 - $\cdot \gamma$ radiation-induced LC is reversible
 - •Reduce size of passivation layer strongly suppresses LC increase
 - •Not a problem for GERDA
- Genius-TF result "limited long-term stability of naked HPGe detectors" not confirmed

(Krivosheina and Klapdor-Kleingrothaus, Phys. Scr. T127 (2006) 52-53)

Outlook - GERDA Phase I enriched diodes

- All enriched detectors in GERDA Detector Laboratory, LNGS, in 2005
- Testing in their cryostats \rightarrow all detectors in working condition

Opening and dimensions measurement

 Refurbishment procedure of the Phase I enriched diodes is ongoing at Canberra Semiconductor, Olen (detectors stored underground) DPG, Freiburg, March 2008

H.V. Klapdor-Kleingrothaus, I.V. Krivosheina / Nuclear Instruments and Methods in Physics Research A 566 (2006) 472–476 475

Table 1

The high voltages applied to the detectors after installation in GENIUS-TF I, II and III as function of time, and the nominal voltages

Detectors	D1	D2	D3	D4	D5	D6
GENIUS-TF-I, from	m 10.12.2003, till 25.0	9.2004				
10.12.03	2404	2603	2879	2301	n. inst.	n. inst.
06.04.04	2600	2220	2879	2301	_	_
04.05.04	2600	2220	3200	2500		
GENIUS-TF-II, fro	om 18.11.2004, till 28.	02.2005				
08.10.04	250	1296	261	954	1253	502
18.11.04	364	2200	347	2298	3501	1015
20.01.05	364	2200	347	2298	3501	1000
GENIUS-TF-III, fr	om 15.03.2005					
15.03.05	80	1802	20	2153	3501	980
03.05.05	0	1700	0	1500	3501	980
09.03.06	_	1700	_	_	3500	911
19.05.06	_	1600	_	_	2100	850
Nom.	3000	2600	3200	2500	3500	2000