Design des GERDA Kryostaten Design of the GERDA cryostat

Bernhard Schwingenheuer Max-Planck-Institut für Kernphysik

Motivation: what is the nature of Neutrinos?

In SM: no symmetry exists to conserve L (more precisely: B-L) !!!

If L violated \rightarrow "there is no quantum number that makes v and \overline{v} different"

 \rightarrow in general $v = \overline{v}$ (Majorana particle)

Is the neutrino its own anti-particle? Yea or nay

What is double beta decay?

Experimental challenges:

- good energy measurement
- small background index B [counts/(keV kg y)],
- enrich ⁷⁶Ge isotope: 7.4%(nat) \rightarrow 86% possible

Background spectrum measured with Ge diode

The GERmanium Detector Array collaboration

GERDA mission

continue $0\nu\beta\beta$ search with ⁷⁶Ge at LNGS find best solution to reduce backgrounds: naked Ge diodes in liquid argon (T87.9 Marik Barnabe Heider)

phase I: use 8 existing enriched Ge diodes from Heidelberg-Moscow & IGEX ~15 kg, bkg lower than HdM by factor 15

phase II: add new (segmented) detectors +20 kg, factor 100 lower bkg than HdM

phase I: scrutinize $0\nu\beta\beta$ HdM claim phase II: factor 10 in sensitivity for $T_{1/2}$

phase III: worldwide collaboration for sensitivity of $\langle m_{ee} \rangle \sim 50$ meV,

active communication with MAJORANA coll.

GERDA formed in Febr 2004

List of institutions:

INFN LNGS, Assergi, Italy Univ. Dresden, Germany JINR Dubna, Russia Institute for Reference Materials, Geel, Belgium MPIK, Heidelberg, Germany Jagiellonian University, Krakow, Poland Univ. di Milano Bicocca e INFN, Milano, Italy INR, Moscow, Russia ITEP Physics, Moscow, Russia Kurchatov Institute, Moscow, Russia MPI Physik, München, Germany Univ. di Padova e INFN, Padova, Italy Univ. Tübingen, Germany Univ. Zürich, Switzerland

~80 physicists, 14 institutions, 6 countries approved Nov 2004 at <u>LNGS</u> Spokesperson Stefan Schönert, MPIK

GERDA solution for LNGS Hall A

Cryostat design considerations Options

	copper cryostat	 stainless steel cryostat ~1 mBq/kg of ²²⁸Th → only LAr (1.4 kg/l) possible ~30 mBq ²²²Rn emanation (preliminary measurement) e.g. tungsten inert gas (TIG) standard material 		
radiopurity*	<20 µBq/kg of ²²⁸ Th → LN2 (0.8 kg/l) or LAr <1 mBq ²²² Rn emanation			
welding	only electron beam (EB)			
safety	some concerns			
cost	not affordable	still a lot of money		
* *				

* talks on radiopurity measurements:
 T87.8: W. Maneschg, γ spectroscopy screening of stainless steel
 T68.6: H. Simgen, Rn emanation measurements

The Copper solution

660 m³ EB facility of pro-beam in Burg

EB gun

sketch of EB welding preparation

Design was ready, welding certification done, but
price increase by factor 3-4 after 1 year of R&D, mainly for mechanical preparation
safety concerns at LNGS

May 2006: switch to standard stainless steel cryostat → LN2 no longer an option
GERDA KryostatDPG Tagung Freiburg 2008AØ8

The stainless steel solution

compensator for thermal shrinkage of inner vessel

6 lateral fixations (Torlon)

6 cm copper plates

vacuum insulation with Multi Layer Insulation foil 200 W thermal loss

8 supports (Torlon)

6 lateral fixations (Torlon)

DPG Tagung Freiburg 2008

general:

- double-walled out of X6 CrNiMoTi 17-12-2

- 65 m³ LAr

- 200 W thermal loss
- 1.5 bar overpressure
- 0.6 g earth quake
- 8 m water height
- AD2000 design

safety:

- only 1 opening
- inner vessel supported at bottom
- walls at least 3 mm thicker than required

radioactivity:

- material screened with
 - γ spectrometry \rightarrow OK
- radon emanation 9 measurement

Safety, safety, ...

More advanced experiments....

measure : mass & temperature as function of time after water flooding

Measured evaporation rates

GERDA Kryostat

DPG Tagung Freiburg 2008

Risk analyses

Page : 1/23

	Nº Chrono	: D6035 NT 3 (2)	
	Nº Affaire	: GERDA	
TECHNOLES ANALOSES	N° Client	: MPI	

Risk assessment FMECA Study report Gerda Cryostat for MPI

The GERDA Collaboration

Phase 3: integration of phase 1 & 2

questions put forward at the Geneva meeting

TÜV NORD INDUSTRIEBERATUNG

TÜVNORD SysTec GmbH & Co. KG

Cryogenic and Water Tank System Preliminary Risk Analysis

Answers, additional analysis and implementation regarding the

Expert's Report

Risk assessment concept for the copper cryostat of the Gerda project

Commissioned by: Max Planck Institute for Nuclear Physics POB 10 39 80 D-69029 Heidelberg Engineer in charge: Dipl.-Ing. Jörk Dubiel, Dipl.-Ing. Hartmut Wolter Date: June 20, 2005

GERDA Kryostat

Risk matrix (final NIER report)

Consequecy Event /year	No relevant effects	Minor effects	Serious effects	Major Effects	Mortal (N°1 lethality)	Mortal (N° 2÷10 lethalities)
1 – 10 ⁻¹	A	т	I.			
10 ⁻¹ - 3*10 ⁻²	A Event 1		т			
3*10 ⁻² – 3*10 ⁻³	A Event 1* - Event 2	A Event 5	т	т	I.	I
3*10 ⁻³ – 10 ⁻³	A	А	A	т	I.	I
10 ⁻³ – 3*10 ⁻⁴					! *	 *
3*10 ⁻⁴ – 10 ⁻⁴	A Evento 8 A Evento 9	A	A	A	т	т
10 ⁻⁴ - 10 ⁻⁵				A Evento 3 - Evento 6		
10 ⁻⁵ – 10 ⁻⁶	А	А	A Evento 10	A	т	т
10 ⁻⁶ – 10 ⁻⁸	A	А	A Evento 11	A	А	А
<10 ⁻⁸	A	А	А	A	А	A Top 1 - Evento 7 Evento 3* - Evento 6*

Event 3 = crack in outer vessel, Event 3* = large hole in outer vessel, Event 6 = crack in inner vessel

Event 6* = large hole in inner vessel

Event 7= simultaneous failure of both walls, TOP1 = failure of safety devices & one wall

Status: cryostat on its way to LNGS

cryostat ready at SIMIC, Italy

waiting for transport to LNGS

Conclusions

Copper solution failed

Radioactivity of stainless steel cryostat ok for LAr operation Radon emanation still under evaluation

Safety was(is) a big concern

Cryostat is finished and soon on its way to LNGS

GERDA will be built around the cryostat, completion in one year