## Radon-Emanationsmessungen im Rahmen von GERDA

### Hardy Simgen, Grzegorz Zuzel

Max-Planck-Institut für Kernphysik Heidelberg



## Übersicht

- Der Doppelbeta-Zerfall
- Das GERDA-Experiment
- Die <sup>222</sup>Rn-Emanationstechnik
- Ergebnisse:
  - O-Ringe f
    ür die GERDA-Schleuse
  - Schweißnähte
  - Der GERDA-Kryostat
- Zusammenfassung



### **Doppelbeta-Zerfall**





Kontinuierliches ββ Spektrum erwartet



- Nur möglich, wenn v Majorana-Charakter hat
- Peak bei  $Q_{\beta\beta}$  erwartet

Hardy Simgen, T 68.8, DPG-Tagung Freiburg 2008

**Ο**νββ-Zerfallsrate  

$$1/\tau = G(Q, Z) \cdot |M_{nucl}|^2 \cdot \langle m_{\beta\beta} \rangle^2$$
Phasenraum-  
faktor (~Q<sub>ββ</sub><sup>5</sup>) Kernmatrix-  
element Effektive Majorana  
Neutrinomasse

$$\langle m_{\beta\beta} \rangle = |\sum_{j} m_{j} U_{ej}^{2}|$$

kohärente Summe

### **GERDA in Kürze**

- Neues Doppelbeta-Zerfallsexperiment mit angereichertem  $^{76}Ge~(Q_{\beta\beta}=2039~keV)$
- Ge-Halbleiterdioden: Quelle = Detektor
- Ziel: Signifikante Untergrundreduzierung im Bereich von Q<sub>ββ</sub> auf ≤10<sup>-3</sup> cts/(kg⋅keV⋅y) bei 100 kg⋅y Exponierung
- Verunreinigungen in fr
  üheren Experimenten haupts
  ächlich im Kryostaten / Diodenhalter

→ "Nackte" Dioden in kryogener Flüssigkeit (LAr)

 Kryogene Flüssiggase (LN<sub>2</sub>/LAr) enthalten sehr wenig radioaktive Verunreinigungen

### **GERDA Sensitivität**





V.A. Rodin at al., Nucl. Phys. A 366 (2006) 107-131.

Erratum: *Nucl. Phys. A 793* (2007) 213-215.

Untergrundreduzierung!

Hardy Simgen, T 68.8, DPG-Tagung Freiburg 2008

### **GERDA-Design**







### Radonquellen in der Praxis

Identifizieren (d.h. Messen) und Vermeiden aller <sup>222</sup>Rn-Quellen (d.h. Reinigen / evt. Komponente austauschen).



### HD II Low-Level-Proportionalzählrohr



### Untergrund für <sup>222</sup>Rn: ~1 Ereignis/Tag





# Zählrohrfüllapparatur



7. März 2008

Hardy Simgen, T 68.8, DPG-Tagung Freiburg 2008



#### Absolute Nachweisgrenze: ~20 µBq (10 Atome!)

### Ausgewählte Ergebnisse: Kalrez O-Ringe für Schleuse



# Kalrez O-Ringe für die GERDA Schleuse



| Nummer                     | Anzahl | <sup>222</sup> Rn Emanationsrate<br>[mBq] | <sup>222</sup> Rn Emanationsrate<br>pro Dichtung<br>[mBq] |
|----------------------------|--------|-------------------------------------------|-----------------------------------------------------------|
| 317483                     | 4      | 0,6 ± 0,1                                 | 0,2                                                       |
| 330502                     | 6      | 1,3 ± 0,1                                 | 0,2                                                       |
| 330500 +<br>330501         | 2 + 2  | 1,5 ± 0,1                                 | 0,4                                                       |
| 327259                     | 1      | 0,3 ± 0,1                                 | 0,3                                                       |
| Vergleich:<br>Viton O-Ring | 1      | 19 ± 1                                    | 19                                                        |

Alle O-Ringe haben ähnliche Größe (~2 m Umfang)

### <sup>222</sup>Rn-Emanation aus Edelstahl



- <sup>222</sup>Rn-Diffusion in Metall  $\rightarrow 0$
- <sup>222</sup>Rn-Emanation nur über Rückstoß (~30 nm) und Oberflächenverunreinigungen
- Messergebnis von ~70 m<sup>2</sup> Edelstahlband:  $(5 \pm 1) \mu Bq/m^2$
- Schweissnähte stellen potentielle Radonquelle dar!

### Schweißnähte





### <sup>222</sup>Rn-Emanation von Schweißnähten



| Zahl<br>der<br>Platten | Beschreibung                                        | Behandlung                                                                                        | Emanationsrate<br>[mBq/m] |
|------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|
| 7                      | Oberfläche: 1.5 m <sup>2</sup><br>2,5 m Schweißnaht | "Standard"-<br>Entfettung im<br>Ultraschallbad                                                    | 0,36 ± 0,04               |
| 2 davon                | 0,8 m Schweißnaht                                   | Ätzung mit 20 %<br>HNO <sub>3</sub> und 1,7 % HF<br>plus Passivierung<br>mit 15% HNO <sub>3</sub> | < 0,1                     |
| 4 davon                | 1,2 m Schweißnaht                                   | Elektropolitur                                                                                    | 0,10 ± 0,04               |
| 4 davon                | 1,2 m Schweißnaht                                   | Elektropolitur und<br>Ätzung                                                                      | < 0,04                    |

# Konsequenzen für Emanation des GERDA-Kryostaten

- Edelstahl-Emanation mit 5  $\mu$ Bq/m<sup>2</sup>:
  - ⇒ (~80 m<sup>2</sup>): 0,4 mBq
- Unbehandelte Schweißnähte mit 0,36 mBq/m: ⇒ (~100 m): 40 (20\*) mBq
- Geätzte Schweißnähte mit <0,4 mBq/m: ⇒ (~100 m): <4 (<2\*) mBq</li>
- Monte Carlo: 10<sup>-4</sup> cts/(kg⋅keV⋅y) ⇔ 8 mBq bei homogener Radonverteilung

\* nur 1 Seite der Schweißnaht trägt bei



### **Rn-Emanationsmessungen des GERDA-Kryostaten**

- Leicht abgeänderte Messprozedur:
  - Füllen mit <sup>222</sup>Rn-freiem N<sub>2</sub>
  - Extraktion von Teilproben nach einigen Tagen
- 1. Messung (23 m<sup>3</sup> von 169 m<sup>3</sup> (STP)): (16.9 ± 1.6) mBq für ganzen Kryostat
- 2. Messung (45 m<sup>3</sup> von 146 m<sup>3</sup> (STP)): (29.8  $\pm$  2.4) mBq für ganzen Kryostat
- Radon-Sedimentierung?

### Zusammenfassung

- Doppelbetazerfallsexperiment GERDA stellt extreme Reinheitsanforderungen
- <sup>222</sup>Rn-Emanationstechnik ist empfindliches Werkzeug zur Reinheitsüberprüfung
- Gründliche Untersuchung aller Materialien des inneren Detektors läuft
- Saubere O-Ringe für Schleuse entdeckt (Kalrez)
- <sup>222</sup>Rn-Emanation des Edelstahl-Kryostaten tolerierbar
  - wahrscheinlich dominiert durch Schweißnähte