Neutron Interactions

as Seen by a Segmented Germanium Detector

[arXiv: nucl-ex/0711.2255]

Iris Abt, Allen Caldwell, Kevin Kröninger, Jing Liu*, Xiang Liu, Bela Majorovits

* Jing Liu @ DPG2008, Freiburg

Introduction :: GERDA (GERmanium Detector Array)

Introduction :: Neutron as background for GERDA

03.03.2008

Experimental setup

Schematic experimental setup (not to scale).

Nucl. Instrum. Meth. A 577 (2007) 574 [nucl-ex/0701004]

GERDA Prototype Detector

75.0 mm

Detector:

- Natural germanium
- n-type
- True coaxial
- Segmented: $3(z) \times 6(\phi)$
- Resolution ~3keV@1.3MeV

Nucl. Instrum. Meth. A 577 (2007) 574 [nucl-ex/0701004]

Neutron interactions that can be identified

Peaks induced by AmBe neutron source

Fitted Energy [keV]	Fitted FWHM [keV]	Interaction Type	Number of Events	Fitted Energy [keV]	Fitted FWHM [keV]	Interaction Type	Number of Events
139.4 197.9 499.8	1.6 ± 0.2 1.9 ± 0.2 1.9 ± 0.7	$^{74}{ m Ge}(n,\gamma^m) \ ^{70}{ m Ge}(n,\gamma^m) \ ^{70}{ m Ge}(n,\gamma^m)$	3377 ± 520 3306 ± 503 503 ± 186	$ 3427 \\ 3931 \\ 4441 $	85 ± 7 87 ± 5 92 ± 2	DEP ^a of 4441 SEP ^a of 4441 ${}^{9}\text{Be}(\alpha, n)^{12}\text{C}^{*}$	2354 ± 263 5873 ± 368 14672 ± 297
595.7^a 662.0^b	-1.9 ± 0.1	$\frac{{}^{74}\mathrm{Ge}(n,n'\gamma)}{{}^{140}\mathrm{Ce}(n,\gamma)}$	$\frac{(18.4 \pm 2.5) \times 10^3}{2802 \pm 188}$	³ 4946 6113	4.9 ± 1.4 7^{b}	$^{12}C(n,\gamma)$ $^{35}Cl(n,\gamma)$	68 ± 15 75 ± 12
$685.6 \\ 692^d \\ 708.5$	1.4 ± 0.2	$\frac{7^{2}}{7^{2}}$ Ge $(n, n'e)$	628 ± 111 ~ 7000 ^e 782 ± 107	$6904 \\ 7126 \\ 7416$	7^{b} 7^{b} 7^{b}	SEP^{a} of 7416 ? ^c ${}^{35}Cl(m, \alpha)$	60 ± 10 38 ± 9 70 ± 10
708.5	2.4 ± 0.3 1.9 ± 0.2	$^{36}Cl \rightarrow ^{36}Ar$? ^c	3502 ± 148	7633 7793	7^{b} 7.1 ± 2.1	56 Fe (n, γ) 35 Cl (n, γ)	$ 10 \pm 10 \\ 18 \pm 10 \\ 21 \pm 8 $
$\begin{array}{c} 843.4\\ 846.6\end{array}$	$\begin{array}{c} 2.4 \pm 0.5 \\ 2.4 \pm 0.2 \end{array}$	$^{27}\mathrm{Al}(n,n'\gamma)$ $^{56}\mathrm{Fe}(n,n'\gamma)$	1558 ± 202 2802 ± 196	7918	6.8 ± 1.4	$^{63}\mathrm{Cu}(n,\gamma)$	29 ± 8
867.8 962.2 1014 3	1.9 ± 0.5 2.4 ± 0.2 2.4 ± 0.2	$^{^{\prime 3}}$ Ge (n, γ) 63 Cu $(n, n'\gamma)$ 27 Al $(n, n'\gamma)$	425 ± 129 1041 ± 129 1958 ± 123	Cross sec	ction	\bigwedge	
1164.1 1200.8	2.6 ± 0.5 2.8 ± 0.2	$^{35}Cl(n, \gamma)$ DEP ^f of 2223	646 ± 140 2318 ± 122	of the det	ector		
1326.9 1711.8 1778.0	2.4 ± 0.2 3.8 ± 0.1	63 Cu $(n, n'\gamma)$ SEP ^f of 2223	711 ± 91 5555 ± 133 460 ± 72		/	• y	
2223.2	2.0 ± 0.2 3.8 ± 0.1	^{AI} $(n, \gamma),$ ²⁸ Al \rightarrow ²⁸ Si ¹ H (n, γ)	409 ± 73 79349 ± 300				n

Interaction topologies of events in 595.7 keV peak from ⁷⁴Ge(n,n' γ)

Interactions as seen by core & segments

Two more peaks from neutron inelastic scattering

Recoil energy spectra

E [keV]	N_{type1}	N_{type2}	N_{type3}	N_{total}
595.8	$(1\pm1)\times10^{3}*$	$(10\pm3)\times10^3$	7285 ± 218	$(18.4 \pm 2.5) \times 10^3$
834.0	[0, 380]	[4100, 4700]	2592 ± 186	[6700, 7700]
1039.2	[0, 240]	[2700, 3100]	1429 ± 182	[4100, 4800]

Simulation

MaGe:

- a C++ simulation package developed by the MC groups of the Majorana and Gerda collaborations
- based on Geant4

Nuclear recoil is not simulated by Geant4

Bugzilla/Geant4 – Problem 675:

No boost from CM->Lab for G4NeutronHPInelastic

Other Geant4 bugs

- Meta stable states are missing [will be fixed]
- Internal conversion is missing [no evaluated data]
- Energy of a photon from $H(n,\gamma)$ is wrong [fixed]

Summary

- Neutron interactions are a potential background for GERDA
- Neutron experiment using GERDA prototype detector carried out
- Peaks due to neutron interactions identified
- Different topologies of neutron inelastic scatterings with the segmented germanium detector studied in great detail
 - Segmented detector proved to be powerful to distinguish some neutron interactions from $0 \nu\beta\beta$ signal.
 - Recoil and gamma energy of neutron inelastic scattering can be disentangled from each other using segmented detector
- MC simulation verified. Several crucial problems found. Some fixed, some not.

Simulation of Am-Be neutron source

Thermal neutron capture

Neutron capture in ⁷⁶Ge (0⁺) can eventually populate (after IT) ⁷⁷Ge_{a.s.}(7/2⁺) or ⁷⁷^mGe (1/2⁻, 159 keV)

⁷⁷Ge β-decays to ⁷⁷As ($T_{1/2}$ = 11.3 h, Q = 2.7 MeV). ^{77m}Ge ($T_{1/2}$ = 52.9 s) can IT to $^{77}Ge_{a.s.}$ (20%) or β -decay to ^{77}As (Q = 2.8 MeV)

Daniel Kollar, GSTR-05-018

Entries/(~0.5 keV)

type 1 events can be calculated as $N_{type1} = N_{total} / \mathcal{R}(E_{\gamma}^{inelastic}) - N_{type3}$.

Fig. 7. The "core to any segment ratio" as a function of the energy.

Lorenz boost from CM. to lab. is missing

Meta stable states are missing

Energy of γ is wrong

