

The GERDA Experiment

3rd CHIPP Swiss Neutrino Workshop Laura Baudis, Physik Institut, Universität Zürich (for the GERDA Collaboration)

Goal of GERDA

- Search for the neutrinoless double beta decay in ⁷⁶Ge
 - information on the absolute mass scale of neutrinos
 - ➡ information on the Majorana vs Dirac nature of neutrinos

Neutrinoless Double Beta Decay

• Not allowed in the Standard Model: $\Delta L = 2$

$$L = 0 \qquad 2n \rightarrow 2p + 2e^{-} \\ 2p \rightarrow 2n + 2e^{+} \qquad L = 2$$

e

e

Neutrinoless Double Beta Decay

Experimental Requirements

• Experiments measure the half life of the decay (T_{1/2})

$$T_{1/2}^{0\nu} \propto \boldsymbol{a} \cdot \boldsymbol{\varepsilon} \cdot \sqrt{\frac{\boldsymbol{M} \times \boldsymbol{t}}{\Delta \boldsymbol{E} \times \boldsymbol{B}}}$$

large detector masses enriched materials ultra-low background excellent energy resolution

the sensitivity depends on:

- \Rightarrow a = enrichment
- $rightarrow \epsilon$ = detector efficiency for observing the e^{-1}
- ➡ M = mass
- t = measuring time
- $\Rightarrow \Delta E$ = energy resolution at the Q-value of the decay
- \Rightarrow B = background in the relevant energy region

 $\frac{1}{|\mathbf{T}^{0v}|} \propto \langle m_{ve} \rangle$

Experiments: Two Main Approaches

Souce ≠ Detector

Source as thin foil Electrons are detected with: scintillator, drift chamber, semiconductor detectors

NEMO (Modane/Frejus)

CUORICINO (LNGS/Italy)

Ba

✤ primordial radionuclides (²³⁸U, ²³²Th, ⁴⁰K) in the detector materials, in the shielding and the concrete/rock (alpha, beta, gamma and neutrons)

✤ cosmic activation of detector materials (zB. ⁶⁰Co, ⁵⁴Mn, ⁶⁵Zn,...)

✤ cosmic rays (muons)

✤ radon in air, radon emanation of materials,....

and

ββ2v-events: irreducible background!
=> an excellent energy resolution of the detector is crucial

Limits on the Effective Majorana Neutrino Mass

Candidate, Q _{ββ} [keV]	Half life [years]	«m _v » [eV]
⁴⁸ Ca, 4271	> 9.5 x 10 ²¹	< 8.3
⁷⁶ Ge, 2039	> 1.9 x 10 ²⁵	< 0.35
⁸² Se, 2995	> 2.7 x 10 ²²	< 5
¹⁰⁰ Mo, 3034	> 5.5 x 10 ²²	< 2.1
¹¹⁶ Cd, 2805	> 7.0 x 10 ²²	< 2.6
¹³⁰ Te, 2530	> 3.0 x 10 ²⁴	< 0.38 - 0.58
¹³⁶ Xe, 2476	> 4.4 x 10 ²³	< 1.8 - 5.2
¹⁵⁰ Nd, 3367	> 1.2 x 10 ²¹	< 3

The Heidelberg-Moscow Experiment

Evidence for the Neutrinoless Decay Mode?

Peak at the Q-value of the decay

$$T_{1/2}^{0v} = 1.2 \times 10^{25} \, yr$$

- Period 1990-2003: 28.8 ± 6.9 events
- Period 1995-2003: 23.0 ± 5.7 events
 - \Rightarrow 4.1- 4.2 σ evidence

$$\langle \boldsymbol{m}_{ve} \rangle = 0.44 \ \boldsymbol{eV} \quad (0.3 - 1.24) \ \boldsymbol{eV}$$

- 'Evidence' remains unclear
 - it should be tested with larger, increased sensitivity experiments

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

The GERDA Experiment

• Idea: operate bare HPGe-crystals in liquid argon (LAr) cryostat

- LAr: shielding against external background (gamma, neutrons)
- →LAr: cooling medium for the Ge diodes (~ 87 K)

• Internal background:

- minimize amount of material close to crystals
- minimize exposure to cosmic rays
- →use pulse shape information of events

• If LAr is instrumented with photo detectors:

additional background rejection through Ge-LAr coincidences

vacuum insulated, double walled stainless steel cryostat, 8 cm vacuum gap

Cu-shield

(6 cm)

The GERDA Experiment: Schematic View

The GERDA Experiment at the Gran Sasso Lab

The GERDA Collaboration

INFN LNGS, Assergi, Italy

A. di Vacri, M. Junker, M. Laubenstein, C. Tomei, L. Pandola

Univ. of Dresden, Germany

K. Zuber

JINR Dubna, Russia

- S. Belogurov, V. Brudanin, E. Egorov, K. Gusev, S. Katulina.
- A. Klimenko, O. Kochetov, I. Nemcheok, V. Sandukovsky,
- A. Smolnikov, J. Yurkowski, S. Vasiliev

MPIK Heidelberg, Germany

C. Bauer, O. Chkvorets, W. Hampel, G. Heusser, W. Hofmann, J. Kiki, K.T. Knöpfle, P. Pfeiffer, S. Schönert, J. Schreiner,

B. Schwingenheuer, H. Simgen, G. Zuzel

Jagiellonian University, Krakow, Poland

M. Wojcik

Univ. di Milano Bicocca e Universita degli Studi e INFN, Italy

E. Belotti, C. Cattadori, A. Pullia, S. Riboldi, F. Zocca

INR, Moscow, Russia

I. Barabanov, L. Bezrukov, A. Gangapshev, V. Gurentsov, E. Kusminov, E. Yanovich

ola **Belgium** J. Gasparo, M. Hult, G. Marissens

ITEP Physics, Moscow, Russia

V.P. Bolotsky, E. Demidova, I.V. Kirpichnikov, A.A. Vasenko, V.N. Kornoukhov

Institute for Reference Materials, Geel,

Kurchatov Institute, Moscow, Russia

A.M. Bakalyarov, S.T. Belyaev, M.V. Chirchenko, G.Y. Grigoriev, L.V. Inzhechik, V.I. Lebedev, A.V. Tikhomirov, S.V. Zhukov

MPP, München, Germany

I. Abt, M. Altmann, C. Büttner, A. Caldwell, R. Kotthaus, X. Liu, H.G. Moser, R.H. Richter

Univ. di Padova e INFN, Italy

A. Bettini, E. Farnea, C. Rossi Alvarez, C.A. Ur

Univ. Tübingen, Germany

M. Bauer, H. Clement, P. Grabmayer, J. Jochum, S. Scholl, K. Rottler

Univ. of Zürich, Switzerland

L. Baudis, A. Ferella, F. Froborg, R. Santorelli, M. Tarka

17 Institutions, 6 Countries

The GERDA Detector Array

GERDA Phase I

- 8 enriched ⁷⁶Ge detectors (Heidelberg-Moscow and IGEX) ~ 18 kg (+ 6 non-enriched HPGe, 15 kg)
- Planned exposure = **30 kg yr**
- Background: B ≈10⁻² events/(kg keV yr)
 - Sensitivity reach:

 $T_{1/2}^{0v} > 3.0 \times 10^{25} yr$

$$\langle m_{ve} \rangle < 0.27 \, eV$$

- If Klapdor-Kleingrothaus signal is true, the expectation for GERDA is:
 - ⇒ 13 signal events and 3 background events in ∆E = 10 keV interval around the Q-value of the decay (Q = 2039 keV)

 $\langle \boldsymbol{m}_{ve} \rangle \approx 0.40 \boldsymbol{eV}$

Background Predictions for GERDA Phase I

- From measured activities of material plus Monte Carlo simulations based on MaGe
- MaGe (Gerda-Majorana): Geant4 based, developed together with Majorana

Source	B [10 ⁻³ events/(keV kg yr)]	
External gammas from ²⁰⁸ TI (²³² Th)	<1	
External neutrons	<0.05	After Muon-Veto
Muons (Veto)	<0.2	180 days exposure at the
Int. ⁶⁸ Ge (T _{1/2} = 270 d)	12	Earth surface after enrichment
Int. ⁶⁰ Co (T _{1/2} = 5.27 yr)	2.5	 + 180 days de-activation below ground
²²² Rn in LAr	<0.2	
²⁰⁸ TI, ²³⁸ U in crystal holders	<1	crystal growing
Surface contamination	<0.6	

Background GERDA Phase I

GERDA Phase II

- 14 ⁷⁶Ge, 18-fold segmented detectors + 8 phase-I detectors, 40 kg
- Exposure = 150 kg yr, Background B = 10⁻³ events/(kg keV yr)
 - sensitivity reach:

$$T_{1/2}^{0v} > 15 \times 10^{25} yr$$

$$\langle m_{ve} \rangle < 0.11 eV$$

segmentation: $6 (\phi) \times 3 (z)$

segmentation:

distinction between single-site (SSE) and multiple-site (MSE) events

Background Reduction with LAr-Veto

Tests of the GERDA Phase I Detectors

- At Gran Sasso GERDA Detector Lab (GDL)
- 17.9 kg enriched and 15 kg non-enriched
- define detector handling procedures
 - ⇒ > 40 cooling cycles in LAr
- measure the leakage currents (LC)
 - ➡ after irradiation with gamma sources
 - operation with LC ~ 10 pA feasible

Energy resolution (at 1.332 MeV) and masses of phase I detectors:

	ANG1	ANG2	ANG3	ANG4	ANG5	RG1	RG2	RG3
FWHM [keV]	2.54	2.29	2.93	2.47	2.59	2.21	2.31	2.26
Mass [kg]	0.98	2.91	2.45	2.40	2.79	2.15	2.19	2.12

Phase II Detectors

• New 18-fold prototype detector operate in liquid nitrogen for 4 months

- ⇒stable leakage current (< 6 pA)
- ➡ core resolution 4 keV (FWHM) at 1.3 MeV
- ➡segment resolution 4.5 7 keV
- Next step: operation in LAr

Phase II Detectors

- BEGe (broad-energy) detectors with point contact are also being considered
- Very encouraging results on PSD with BEGe detector operated in conventional vacuum cryostat

Status of the GERDA Experiment

August 2007, floor plate for water tank

December 2007

Status of the GERDA Experiment

The GERDA cryostat was delivered at LNGS on March 6, 2008 and installed

Status of the GERDA Experiment

Water tank installation: April - June 2008

Installation of super structure

July 2008

Swiss Contributions to GERDA

• Calibration system for Phase I

test different source-collimator configurations, for example

²²⁸Th sources in W + Cu collimators

- estimate gamma and neutron BG in source parking position
- estimate source strength for energy and PSD calibrations

• Test facility for Phase II detectors at UZH

- electronics and DAQ ready and tested
- ➡ first HPGe detector in LAr cryostat to be operated in Dec 08
- test mock up calibration system and calibration MCs
- test phase II GERDA prototypes (non-enriched)

• Study of GERDA sensitivity to solar axions

Expected Sensitivity of GERDA for $T_{1/2}$

Expected Sensitivity of GERDA for $\langle m_{_{Ve}} \rangle$

Summary and Outlook

- Strong evidence for non-zero neutrino masses
- Many open questions: absolute mass scale, Dirac versus Majorana, CP violation, origin of small neutrino masses, origin of large mixing, size of Θ₁₃, etc
- GERDA is a new $\beta\beta$ experiment which may answer some of these questions
- LAr cryostat, water tank, super-structure are in place
- Phase I detectors processed and tested (+ strong efforts on Phase II detectors)
- Calibration system design is being finalized
- Next steps:
 - clean room construction: Jan March 09
 - muon veto construction: March April 09
 - ➡ LAr filling: spring 2009
 - commissioning of Phase I: summer 2009

End

Muon Veto

- PMTs encapsulated and tested
- Muon DAQ and slow control under development
- Next step: installation at LNGS
- 1st batch of plastic muon panels delivered to LNGS

Crystal pulling and characterization

- 7 crystals pulled at IKZ for characterization with low-temp.
- Hall effect, PTIS, PL
- Starting material standard 6N, and one xtal from
- depleted material purified by PPM
- Impurity level 10¹³/cm³ (10¹¹/cm³ for ped. method);
- not yet sufficient for HP-Ge production
- Improvements ongoing
- Increase turn around for crystal characterization
- Possibilities of crystal pulling by Canberra (p- and n-type)

Background Reduction with LAr Veto

• In the near future: tests at the Gran Sasso Laboratory with LArGe (under construction)

LArGe: Cu-shield

Neutrinoless Double Beta Decay

• Exchange of a virtual neutrino:

- ➡ the neutron decays under the emission of a right-handed anti-neutrino
- \blacksquare the \overline{V}_R has to be absorbed as left-handed neutrino at the second vertex
- Neutrinos and anti-neutrinos have to be identical: Majorana particles
- For the helicity to change, we must require $m_v > 0$

Experiments: Two Main Approaches

Souce ≠ Detector

 Topologie der Ereignisse wird zur Untergrundunterdrückung verwendet
 Winkelkorrelationen und die Energie der einzelnen Elektronen werden gemessen
 Viele Isotope als mögliche Quellen

Recht kleine Materialmengen

Niedrige Effizienz

iA schlechte Energieauflösung

Source = Detector (calorimeters)

© Grosse Massen möglich

Oblight Beiden Effizienz f
ür den Nachweis der beiden Elektronen

© Gute Energieauflösung

Keine Winkelkorrelation