Status of the GERDA experiment

Hardy Simgen

Max-Planck-Institut für Kernphysik Heidelberg

on behalf of the GERDA collaboration

Outline

- Introduction and motivation
- Goals and design of GERDA
- Main hardware components of GERDA:
 - Cryostat and water tank
 - Cleanroom and lock system
 - GERDA detector laboratory (GDL)
- Status of subprojects:
 - Detector preparation for phase I
 - Development of phase II detectors
 - Further running R&D programs
- Schedule and summary

2

The GERDA collaboration

A.M. Bakalyarov^a, M. Balata^b, I. Barabanov^c, L. Baudis^d, C. Bauer^e, E. Bellotti^f, S. Belogurov^{g,c}, S. T. Belyaev^a, M. Barnabe-Heider^e, A. Bettini^h, L. Bezrukov^c, V. Brudaninⁱ, D. Budjas^e, A. Caldwell^j, C. Cattadori^{b,f}, O. Chkvorets^e,
E. V. Demidova^g, A. Di Vacri^b, V. Egorovⁱ, A. Ferella^d, A. Gangapshev^c, J. Gasparro^k,
P. Grabmayr^l, G. Y. Grigoriev^a, K. N. Gusev^a, V. Gurentsov^c, W. Hampel^e, M. Heisel^e, G. Heusser^e, W. Hofmann^e, M. Hult^k, L.V. Inzhechik^a, M. Jelen^j, J. Jochum^l,
M. Junker^b, S. Katulinaⁱ, J. Kiko^e, I.V. Kirpichnikov^g, A. Klimenko^{i,c}, M. Knapp^l,
K.T. Knoepfle^e, O. Kochetovⁱ, V.N. Kornoukhov^{g,c}, K. Kroeninger^j, V. Kusminov^c,
M. Laubenstein^{b,f}, V.I. Lebedev^a, M. Lindner^e, J. Liu^j, X. Liu^j, B. Majorovits^j,
G. Marissens^k, I. Nemchenokⁱ, L. Niedermeier^l, J. Oehm^e, L. Pandola^b, P. Peiffer^e,
A. Pullia^f, F. Ritter^l, C. Rossi Alvarez^h, V. Sandukovskyⁱ, S. Schoenert^e, J. Schreiner^e,
M. Smolnikov^{i,c}, F. Stelzer^j, M. Tarka^d, A.V. Tikhomirov^a, C. Tomei^b, U. Trunk^e,
C.A. Ur^h, A.A. Vasenko^g, S.Vasiliev^{i,c}, M. Wojcik^m, E. Yanovich^c, J. Yurkowskiⁱ,

^a Russian Research Center Kurchatov Institute, Moscow, Russia
^b INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
^c Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
^d Physik Institut, Universität Zürich, Switzerland
^e Max-Planck-Institut für Kernphysik, Heidelberg, Germany
^f Università di Milano Bicocca e INFN Milano, Milano, Italy
^g Institute for Theoretical and Experimental Physics, Moscow, Russia
^h Dipartimento di Fisica dell'Università di Padova e INFN Padova, Padova, Italy
ⁱ Joint Institute for Nuclear Research, Dubna, Russia
^j Max-Planck-Institut für Physik, München, Germany
^k Institute for Reference Materials and Measurements, Geel, Belgium
^l Physikalisches Institut, Universität Tübingen, Germany
^m Institute of Physics, Jagellonian University, Cracow, Poland

~70 physicists 13 institutions 6 countries

GERDA – A quick overview

- Next generation ⁷⁶Ge double beta decay experiment at Gran Sasso
- Significant reduction of background around $Q_{\beta\beta}$ to $\leq 10^{-3}$ cts/(kg·keV·y)
- Contamination in previous experiments mainly in cryostat / diode holder

 \rightarrow Bare diodes in cryogenic liquid (LAr)

• Cryogenic liquids have very high radiopurity

Why Germanium?

- Enrichment of ⁷⁶Ge possible (natural abundance: 7.4%)
- Germanium semiconductor diodes
 - source = detector
 - excellent energy resolution
 - ultrapure material (monocrystal)
- long experience in low-level Germanium spectrometry

Previous ⁷⁶**Ge 0** $\nu\beta\beta$ experiments

IGEX experiment:

C. Aalseth et al., Phys. Rev. D 65, 092007.

T_{1/2} > 1.6 10²⁵ y (90% C.L.)

Heidelberg-Moscow experiment:

H.V.Klapdor-Kleingrothaus et al., Phys.Lett. B586 (2004) 198. $T_{1/2} = (0.7 - 4.2) \cdot 10^{25}$ y (3σ range)

Scrutinize claim with same & different isotopes!

September 14, 2007

Phases of GERDA

- Phase I:
 - Use of existing ⁷⁶Ge-diodes from Heidelberg-Moscow and IGEX-experiments
 - 17.9 kg enriched diodes \Rightarrow ~15 kg ⁷⁶Ge
 - Background-free probe of KKDC evidence
- Phase II:
 - Adding new segmented diodes (total: ~40 kg ⁷⁶Ge)
 - Demonstration of bkg-level <1 count/(kg-keV-y)
- If KKDC-evidence not confirmed:
 - Goal: O(1 ton) experiment in worldwide collaboration (cooperation with Majorana)

assumed energy resolution:

 $\Delta E = 4 \text{ keV}$

Background reduction!!!

GERDA sensitivity

using $< M^{0v} > = 3.92$

V.A. Rodin at al., Nucl. Phys. A 366 (2006) 107-131

Erratum: Nucl. Phys. A 793 (2007) 213-215

Gas purification for BOREXINO

Argon purification from ²²²Rn

- Same principle as N₂ purification
- Initial ²²²Rn conc. in Ar higher than in N₂
- In gas phase achieved:

 222 Rn in Ar: <1 atom/4m³ (STP)

- Even sufficient for GERDA phase III
- Purification works also in liquid phase (efficiency lower \Rightarrow more activated carbon)

G. Zuzel: "Low-level techniques applied in the experiments looking for rare events", Wed. 12.09, Solar neutrinos & low background techniques

Stainless steel (SS) cryostat

- Ordered in Dec. 2006
- 4 vessel heads produced
- Welding certification in progress
- Delivery: Beginning of 2008

²⁰⁸TI requirements

Radioactivity of the SS cryostat

- SS contains U/Th/Kcontaminations (and ⁶⁰Co)
- Most dangerous: ²⁰⁸TI (²¹⁴Bi)
- LAr (higher density than LN₂)
- ²⁰⁸TI requirements of stainless steel (SS 1.4571) for
 - Vessel heads: <10 mBq/kg</p>
 - Cylindrical part: <5 mBq/kg

Screening results of stainless steel samples (SS 1.4571)

0	Specific activity [mBq/kg]]	
110.	$^{228}\mathrm{Th}$	226 Ra	$^{40}\mathbf{K}$	60 Co]	
l D	5.1 ± 1.0	2.9 ± 1.0	< 3.9	6.5 ± 0.5]]	
2 G	< 0.27	< 0.35	< 1.1	13.0 ± 0.6		
3 D	1.1 ± 0.4	< 0.84	< 3.3	15.1 ± 0.5	1 >	SS:
4 D	< 2.6	< 2.2	< 6.2	14.4 ± 1.0		he he
5 D	< 1.1	< 1.2	< 2.8	11.6 ± 0.5]]	
5 D	< 0.8	< 0.6	< 1.7	16.7 ± 0.4])	
7 G	< 0.20	< 1.3	< 2.8	45.5 ± 2.1		cal
3 G	< 0.11	< 0.24	< 0.93	14.0 ± 0.1		dric art
) G	< 0.41	< 0.74	< 1.1	13.8 ± 0.7] [
) G	< 1.0	< 1.3	< 6.8	17.1 ± 0.7		cyl
G	1.5 ± 0.2	1.0 ± 0.6	< 0.81	18.3 ± 0.7]]	16

Water tank and muon veto

- Passive shield (reduces amount of LAr)
- Filled with ultrapure water
- Equipped with 66 PMTs: Cherenkov detector
- Plastic scintillator on top
- Construction has started (bottom plate installation)

Cleanroom on top of water vessel

September 14, 2007

The lock system

September 14, 2007

H. Simgen, TAUP 2007 / Sendai

H. Simgen, TAUP 2007 / Sendai

20

Construction in hall A started

GERDA detector lab (GDL) at Gran Sasso

Enriched diodes for phase I

- In 2006 3 IGEX diodes and 5 HdM diodes were removed from their cryostats
- Dimensions were measured
- Construction of dedicated lowmass holder for each diode

Reprocessing of enriched and non-enriched diodes for phase I

- Different design of Hd-Moscow and IGEX diodes
- Reprocessing of all diodes at manufacturer
- Underground storage in between
- 17.9 kg enriched and 15 kg nonenriched crystals under processing

Phase I prototype testing

- Low mass detector holder developed and tested
- Definition of detector handling protocol
- Optimization of thermal cyclings
 - >40 warming and cooling cycles carried out
 - Passivation layer only refurbished twice

September 14, 2007

Phase I prototype testing

- Study of leakage current (LC) with respect to
 - Detector handling procedure
 - Irradiation with γ-sources
- Prototype detector continuously operated in LAr under varying irradiation conditions since Feb 07
- Present LC similar to initial value (few tens of pA)

GERDA phase II

- September 2005: 37.5 kg enrGe produced
 - ~87% ⁷⁶Ge enrichment
 - in form of GeO₂
 - Chemical purity: 99.95 % (not yet sufficient)
- Underground storage until further processing steps are defined
- Investigation of different options for crystal pulling

Development of true-axial segmented detectors

- ββ-decay is single-site event, γbackground mostly multi-site event ⇒ Discrimination by segmentation
- Available detectors for testing:

 - two 18-fold (6φ, 3z) segmented detectors (n- and p-type)
- 18-fold n-type preferred:
 - Segmentation easier
 - Thin outside dead layer
 ⇒ little loss of active mass

yer mass H. Simgen, TA

Results obtained with 18-fold segmented n-type detector

Suppression of events from external ⁶⁰Co and ²²⁸Th source (10 cm distance).

Liquid argon scintillation – Work in progress

- Increase of photo-electron yield:
 - by fluor coating (1100 pe/MeV achieved)
 - by Xe doping
- Characterization of α , β , γ and neutron interactions by pulse shape analysis
- Preparation for LArGe in GDL @ Gran Sasso:
 - Study of LAr scintillation in ultralow-background environment
 - operational beginning of 2008

LArGe in GDL @ Gran Sasso

MC example: Background suppression for contaminations located in detector support

LArGe @ Gran Sasso

Front-end electronics

- Requirements:
 - Low noise, low radioactivity, low power consumption, operational at 87 K
- Monolithic JFET semi-integrated CSA currently used for prototype testing
- 2 R&D programs for ASIC CMOS chips
- Characterization and testing ongoing

September 14, 2007

Monte Carlo Simulations

- Joint Gerda/Majorana code "MaGe" based on GEANT4
- Extensive physics validation program (most test setups are implemented).

Muon-induced background I: Prompt background

 75% effective muon-veto is sufficient to achieve 10⁻⁴ counts/kg/keV/y

Muon-induced background II: Delayed background

	Background in LAr [cts/(kg·keV·y)]
^{77,77m} Ge	1.1 • 10-4
Others	5 · 10 ⁻⁵

- ⁷⁷Ge produced from ⁷⁶Ge by n-capture.
- Significant reduction possible by delayed coincidence cut (muon, γ -rays, β -decay).

Schedule

- June 2007: GERDA safety concept officially approved by Gran Sasso
- Water tank installation started → continued after cryostat delivery beginning of 2008
- Next: Construction of lab building, platform, cleanroom and lock (~1 year)
- Meanwhile: Prototype and enriched detector testing is going on
- Commissioning of GERDA ~14 months after cryostat delivery

Summary

- The challenge:
 - Reduction of background by ~2 orders of magnitude wih respect to previous ⁷⁶Ge experiments \Rightarrow Using bare diodes
- The status:
 - Construction of cryostat and water-tank started
 - Good understanding of bare detector handling
 - Reprocessing of existing enriched diodes almost finished
 - New ⁷⁶Ge for phase II available
 - Different new background reduction strategies for phase II and beyond under investigation
- The future:
 - Start data taking in 2009

