Low-level techniques applied in experiments looking for rare events

Grzegorz Zuzel Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Radon (²²²Rn) and its daughters form one of the most dangerous sources of background in many experiments

- inert noble gas
- high diffusion and permeability
- belongs to the ²³⁸U chain (present in any material)
- wide range of energy of emitted radiation (with the daughters)
- surface contaminations with radon daughters (heavy metals)
- broken equilibrium in the chain at ²¹⁰Pb level

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry Germanium

spectroscopy

Applications in Borexino

Applications in GERDA

Proportional counters

- Developed for the GALLEX/GNO experiment
- Hand-made at MPIK (~ 1 cm³ active volume)
- In case of 222 Rn only α -decays are detected
- 50 keV threshold
 - bcg: 0.1 2 cpd
 - total detection efficiency of ~ 1.5 (0.5/ α)
- Absolute detection limit ~ $30 \mu Bq$ (15 atoms)

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

²²²Rn in gases (N₂/Ar)

- ²²²Rn adsorption on activated carbon
- several AC traps available (MoREx/MoRExino)
- pre-concentration from 100 200 m³
- purification is possible (LTA)

²²²Rn detection limit:
~0.5 μBq/m³ (STP)
[1 atom in 4 m³]

²²²Rn emanation

- Emanation chambers $20 \ 1 \rightarrow 50 \ \mu Bq$ $80 \ 1 \rightarrow 80 \ \mu Bq$
- Glass vials $1 l \rightarrow -50 \mu Bq$

Absolute sensitivity ~100 µBq [50 atoms]

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

Conclusions

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

Conclusions

²²²Rn/²²⁶Ra in water

- ²²²Rn extraction from 350 liters
- ²²²Rn and ²²⁶Ra measurements possible

²²²Rn detection limit: ~0.1 mBq/m³
²²⁶Ra detection limit: ~0.8 mBq/m³

²²²Rn diffusion in thin films

- Time dependent diffusion profile registered
- D reconstructed on the base of the mathematical model

Sensitivity ~ 10^{-13} cm²/s

2. Mass spectrometry

Noble gas mass spectrometer

VG 3600 magnetic sector field spectrometer.

Used to investigate noble gases in the terrestial and extraterrestial samples.

Adopted to test the nitrogen purity and purification methods.

Detection limits: Ar: 10⁻⁹ cm³ Kr: 10⁻¹³ cm³ $\implies \stackrel{39}{\Longrightarrow} \text{Ar: } \sim 1.4 \times 10^{-9} \text{ Bq/m}^3 \text{ N}_2 \text{ (STP)}$ $\stackrel{85}{\Longrightarrow} \text{Kr: } \sim 1 \times 10^{-7} \text{ Bq/m}^3 \text{ N}_2 \text{ (STP)}$

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

3. Germanium spectroscopy

GeMPIs at GS (3800 m w.e.)

- GeMPI I operational since 1997 • (MPIK)
 - GeMPI II built in 2004 (MCavern)
 - GeMPI III constructed in 2007 (MPIK/LNGS)
 - Worlds most sensitive spectrometers

GeMPI I:

•

•

.

- Crystall: 2.2 kg, $\varepsilon_r = 102 \%$
- Bcg. Index (0.1-2.7 MeV): 6840 cts/kg/year
- Sample chamber: 151

Sensitivity: $\sim 10 \,\mu Bq/kg$

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in **GERDA**

3. Germanium spectroscopy

Detectors at MPIK: Dario, Bruno and Corrado

MPIK LLL: 15 m w.e.

Mass

spectrometry

Germanium

spectroscopy

Borexino

GERDA

Conclusions

Applications in

Applications in

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

5. Applications in Borexino - ²²⁶Ra in the nylon foil

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

Conclusions

Borexino nylon foil

1 ppt U required (~12 µBq/kg for ²²⁶Ra)

$$\begin{split} D_{dry} &= 2 x 10^{-12} \text{ cm}^2\text{/s } (d_{dry} = 7 \ \mu\text{m}) \\ D_{wet} &= 1 x 10^{-9} \text{ cm}^2\text{/s } (d_{wet} = 270 \ \mu\text{m}) \end{split}$$

 $\begin{array}{l} A_{dry} = A_{sf} + 0.14 \cdot A_{bulk} \\ A_{wet} = A_{sf} + A_{bulk} \end{array}$

Separation of the bulk and surface ²²⁶Ra conc. was possible through ²²²Rn emanation

Very sensitive technique: ($C_{Ra} \sim 10 \mu Bq/kg$)

5. Applications in Borexino – nitrogen

Regular Purity Nitrogen:

- Technical 4.0 quality, not purified
- Production rate up to 100 m3/h (STP)
- ²²²Rn ~ 50 µBq/m³, Ar ~ 10ppm, Kr ~ 30 ppt

High Purity Nitrogen:

- ²²²Rn adsorption on charcoal (LTA)
- Achieved concentration < 0.3 μ Bq/m³
- Production rate up to 100 m³/h (STP) -Ar and Kr not removed

LAK (Low <u>Ar</u> and <u>Kr</u>) Nitrogen: - Spec. Ar < 0.4 ppm, Kr < 0.2 ppt ²²²Rn < 7 μBg/m³

- Purification by adsorption on different materials extensively studied (successfully!)
- Cooperation with companies on the nitrogen survey
- Tests of the nitrogen delivery chain

Nitrogen survey

Nitrogen sample	C _{Ar} [ppm]	C _{Kr} [ppt]	
MESSER (4.0)	200 ± 30	1680 ± 240	
Air Liquide (4.0)	11.0 ± 1.3	40 ± 5	
Linde AG, (7.0)	0.031 ± 0.004	2.9 ± 0.4	
SOL (6.0)	0.0063 ± 0.0006	0.04 ± 0.01	
Westfalen AG (6.0)	0.00050 ± 0.00008	0.06 ± 0.02	
Goal (BOREXINO)	< 0.4	< 0.2	

Tests of the delivery chains

Supplier/setup	$C_{Rn} \left[\mu Bq/m^3 ight]$	C _{Ar} [ppm]	C _{Kr} [ppt]
Linde AG, 3-m ³ movable tank	1.2	0.018	0.06
SOL, 16-m ³ tank	8	0.012	0.02

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

5. Applications in Borexino – nitrogen

LAK Nitrogen tank installed at Gran Sasso

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

6. Applications in GERDA

6. Applications in GERDA – argon purity

 ^{222}Rn in argon (GERDA goal: $C_{\text{Rn}} \leq 1 \ \mu\text{Bq}/\text{m}^3)$

Quality	Company	Sample size [m ³]	C _m [mBq/m ³]	C _f [mBq/m ³]
4.6	Westfalen	117	2.9 ± 0.2	>8
4.8	Air Liquide	80	0.27 ± 0.02	0.4
5.0	Westfalen	200	6.0 ± 0.1	8.4
5.0	Air Liquide (GS)	5	0.25 ± 0.04	0.3
6.0	Westfalen	104	0.11 ± 0.01	0.4

²²²Rn in nitrogen

Quality	Company	Sample size [m ³]	C _m [µBq/m ³]	C _f [μBq/m ³]
4.5 - 5.0	Messer/Air Liquide	40	30 - 70	
6.0 (7.0)	Linde	150	0.7 ± 0.2	1
6.0	SOL	100	15 ± 1	17

Argon purification required. In the gas phase requested purity achieved ($C_{Rn} \le 0.5 \ \mu Bq/m^3$), adsorption for liquid phase under investigations.

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

6. Applications in GERDA – steel screening

GERDA goal for U/Th: $\leq 5 - 10 \text{ mBq/kg}$

		No	Specific activity [mBq/kg]			
Radon detection		110.	$^{228}\mathrm{Th}$	226 Ra	$^{40}\mathbf{K}$	$^{60}\mathbf{Co}$
Mass		1 D	5.1 ± 1.0	2.9 ± 1.0	< 3.9	6.5 ± 0.5
spectrometry		$2 \mathrm{G}$	< 0.27	< 0.35	< 1.1	13.0 ± 0.6
Germanium spectroscopy		3 D	1.1 ± 0.4	< 0.84	< 3.3	15.1 ± 0.5
		4 D	< 2.6	< 2.2	< 6.2	14.4 ± 1.0
Applications in Borexino		5 D	< 1.1	< 1.2	< 2.8	11.6 ± 0.5
		6 D	< 0.8	< 0.6	< 1.7	16.7 ± 0.4
Applications in GERDA	ĺ	$7 \mathrm{G}$	< 0.20	< 1.3	< 2.8	45.5 ± 2.1
Conclusions		8 G	< 0.11	< 0.24	< 0.93	14.0 ± 0.1
		9 G	< 0.41	< 0.74	< 1.1	13.8 ± 0.7
		10 G	< 1.0	< 1.3	< 6.8	17.1 ± 0.7
		11 G	1.5 ± 0.2	1.0 ± 0.6	< 0.81	18.3 ± 0.7
	(SS 1.4571)				

6. Applications in GERDA – copper cleaning

²²²Rn daughters on copper surface

- Screening of ²¹⁰Po with an alpha spectrometer 50 mm Si-detector, bcg ~ 5 α /d (1-10 MeV) sensitivity ~ 20 mBq/m² (100 mBq/kg, ²¹⁰Po)
- Screening of ²¹⁰Bi with a beta spectrometer 2×50 mm Si(Li)-detectors, bcg ~ 0.18/0.40 cpm sensitivity ~ 10 Bq/kg
- Screening of ²¹⁰Pb (46.6 keV line) with a gamma spectrometer 25 % - n-type HPGe detector with an active and a passive shield sensitivity ~ 20 Bq/kg
- Only small samples can be handled artificial contamination needed: e.g. discs loaded with ²²²Rn daughters

Copper cleaning tests

- Etching removes most of 210 Pb and 210 Bi (> 98 %) but **not** 210 Po
- Electropolishing is more effective for all elements but proper conditions have to be found (e.g. ²¹⁰Po reduction from 30 up to 200)

Etching: $1\% H_2SO_4 + 3\% H_2O_2$ Electropolishing: 85 % $H_3PO_4 + 5\%$ 1-butanol

Int. Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, 11-15.09.2007 Sendai, Japan

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

7. Conclusions

• Low-level techniques have "natural" applications in experiments looking for rare events (low-energy neutrinos, neutrino-less double beta decay, search for dark matter/proton decay...)

- Several detectors and experimental methods were developed allowing measurements even at a single atom level
- Described experimental methods were very successfully applied in the Borexino experiment (very low background achieved) and can be adopted in other projects
 - material screening
 - purification and cleaning techniques
 - study of noble gases

Introduction

Radon detection

Mass spectrometry

Germanium spectroscopy

Applications in Borexino

Applications in GERDA

6. Applications in GERDA – argon purificaion

²²²Rn removal from gaseous/liquid argon 150 g- (gas phase) and 60 g-AC traps (liquid phase) used

Radon detection **Red.** factor Sample $C_1 [mBq/m^3]$ $C_2 [mBq/m^3]$ Quality **Remarks** size [m³] [1/kg]4.6 141 0.20 ± 0.02 < 0.0005> 2700 Gas phase 4.8 80 0.27 ± 0.02 0.0007 ± 0.0003 2500 Gas phase 0.050 ± 0.003 0.0020 ± 0.0005 420 Liquid phase 4.6 67 77 0.056 ± 0.004 0.0027 ± 0.0006 Liquid phase 4.6 370 Liquid phase 4.8 140 0.20 ± 0.01 0.005 ± 0.001 640 Liquid phase 4.8 48 0.14 ± 0.01 0.003 ± 0.001 700 5.0 200 Liquid phase 6.0 ± 0.1 0.60 ± 0.02 170 Liquid phase 6.0 104 0.11 ± 0.01 0.006 ± 0.001 305

Required reduction factor for GERDA: O(500)

Mass

spectrometry

Germanium

spectroscopy

Borexino

GERDA

Conclusions

Applications in

Applications in