Neutrinoless Double Beta Decay -Status of GERDA

Ludwig Niedermeier, Universität Tübingen

IDEA, Blaubeuren, 4.7.2007

Double Beta Decay

Neutrinoless Double Beta Decay

From 0v2ß to Neutrino Mass

Feruglio, ≥ Strumia, п. Vissani, NPB 659

Gerda - Motivation

- Improvement of m_{ee} sensitivity
- Check of former publications

Improve Background by ultra-pure shielding

HPGe detectors in *Liquid Argon*

GERDA → 10⁻³ (kg·y·keV)⁻¹

[IGEX 0.1–0.3 (kg·y·keV)⁻¹]

[Hd-M 0.17 (kg-y-keV)-1]

Gerda - Detector Overview

Ge Detectors Phase

5 HdM HPGe:

3 IGEX HPGe: p-type 6.5kg

Canfranc to LNGS

p-type 11kg, $\Delta E = 2-3$ keV

in Nov 05 from

restored (cooled

→ ΔE≈2.3 keV

Refurbishment at Canberra/Olen into ultra-pure detector holders (materials used: Copper, PTFE, silicon)

Underground storage possibility in Hades 500mwe

Tested at GDL@LNGS (former LArGe): resolution, efficiency, leakage current, cooling cycles **Internal background estimation:**

⁶⁰CO 0.5y exposure history keV y) Detector holders (Cu/PTFE):

 $<1.5 \cdot 10^{-3}$ /(kg keV y)

Ge Detectors Phase II

- Available: GeO₂ with **37.5 kg of ⁷⁶Ge** (a=87%) \rightarrow ~10 HPGe ntype (~20 kg)
- 3x6-fold**Broduction:**Purification $\rightarrow 6N$ (PPM Göttingen)

Monozone refinement

→8-9N (PPM) First ^{dep}Ge (20kg) tests under way

CZ puller installationCfystelspals(83, (36)Z

Berlin)

Internal background estimation:
(Canberra)Detector production60C0 ~40d exposure during fabrication $3.5 \cdot 10^{-5} / (kg \text{ keV y})$ (with
 $1.3 \cdot 10^{-3} (1^{st}) ~ 5 \cdot 10^{-4}$ (segment
anticoinc.)

Suspension+cabling+electronics: $<2.10^{-3}$ /(kg keV y)

Ge Detectors Phase II

Panorama of one of the centrifuge modules of the separation facility

GERDA - Cryostat keV y

Stainless steel cryostat (3cm double wall)

 228 Th <830 µBq/kg <1.7⁻⁵/kg keV y ⁶/kg keV y

²²⁶Ra <810 µBq/kg <2.3.10

Inner Cu shield 3 – 6cm

 228 Th < 39 µBq/kg $\mu Bq/kg$ (negligible compared to steel)

²²⁶Ra <50

Superinsulation

²²⁸Th <2.2'10⁻⁶/kg keV y

²²⁶Ra <1.4⁻⁶/kg

Liquid Ar (~50m³)

Initial: 222 Rn ~ 0.4 – 4 mBq/m³ (STP) Required: 0.5 μ Bq/m³ [\rightarrow <10⁻⁴ /(kg keV y)]

LAr Purification of f~1000 needed \rightarrow Proven for gas phase

Simulations - Muon distribution

[cts/(kg keV y)]		det. anticoinc Phase I	segm. antico Phase II	with 95% veto
direkt µ	~2·10 ⁻³	~2·10 ⁻⁴		~10 ⁻⁵
µ-induced [NIMA570(2007)149]	(1.89±0.04)10 ⁻²	(1.6±0.1)10 ⁻³	(4.0±0.4)10 ⁻⁴	~2·10 ⁻⁵

 \rightarrow talk about n-induced ⁷⁷Ge/^{77m}Ge (Georg Meierhofer)

GDL (Gerda Detector Laboratory) LArGe

Cryostat (1.3m³)

Pb, Cu -shielded

In construction until end of 2007

Volume 70 I Cu infrared shield Now: Liquid Ar 5.0 1.6kg, ptype

Tests of prototype Ge detectors in LAr

Examination of **OvECEC** : ${}^{36}Ar + 2e^- \rightarrow {}^{36}S + \gamma(431keV)$

- 1.6kg HPGe in 70l dewar with natural liquid Ar (0.336% ³⁶Ar)
- 2.5cm passive lead shield

$T_{1/2}^{0vECEC} > 1.9 \cdot 10^{18} \text{ y (68\% C.L.)}$

Gerda - Schedule

- Safety concept approved by LNGS
- HPGe prototype testing in GDL ongoing
- Water tank bottom plate in construction
- Cryo tank: installed by end of 2007
- Water tank completion: first half of 2008
- Muon veto & Infrastructure (building, clean room, lock): fall 2008
- Commissioning: beginning of 2009
- Insertion of Phase I detectors and data taking (1 year): 2009
- Insertion of Phase II detectors
- Data taking Phase II (~3 years)
- 1 ton ⁷⁶Ge exp. GERDA+Majorana depending on Phase I+II outcome

Gerda Collaboration

- INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
- Joint Institute for Nuclear Research, Dubna, Russia
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- Jagellonian University, Krakow, Poland
- Università di Milano Bicocca e INFN Milano, Milano, Italy
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Institute for Theoretical and Experimental Physics, Moscow, Russia
- Russian Research Center Kurchatov Institute, Moscow, Russia
- Max-Planck-Institut für Physik, München, Germany
- Dipartimento di Fisica dell'Università di Padova e INFN Padova, Padova, Italy
- Physikalisches Institut, Universität Tübingen, Germany
- EC-JRC-IRMM, Geel, Belgium

Outlook: Majorana

Ultra-large Ge detector array, m(76Ge) ~ 1 ton

Outlook: Majorana

2007 Submission of R&D for **1 ton detector** and for **prototype**

2007-2011 60 kg Ge prototype det. (,Majorana Demonstrator') = 30 kg of ⁷⁶Ge (86%), 30 kg of natural Ge (40 kg p-type, 20 kg n-type)

n-type, 6x6 segm. pos. reconstr. 1-2mm ↔ PSA f=3 for ⁶⁰Co p-type, point contact det. low threshold 0.3 keV highly sensitive PSA

 \rightarrow 120 kg y at 10⁻³ /(kg·ROI·y)

 $T_{1/2}^{0v} > 1.6.10^{26} \text{ y} \text{ m}_{ee} < 0.19 \text{ eV}$ (90% C.L.)

- 2009-2011 Majorana Demonstrator construction
- 2011-2013 Operation, analysis

Gerda

Outlook: and Majorana

Low Z inner shielding (ultra-pure LAr) LNGS 3600 mwe

Water Cherenkov muon veto

High Z inner shielding (ultra-pure Pb) Deep underground >4500 mwe

Plastic scintillator muon veto

Valuable Exchange between GERDA and Majorana