

MAX-PLANCK-GESELLSCHAFT

) COperation of a GERDA phase I prototype detector inliquid argon and nitrogen





Marik Barnabé Heider, Max-Planck für Kemphysik

# Outline

- GERDA phase I
- Enriched detectors
- Testing with prototype diccle
- Lowmass Guhdder
- GERDA Detector Laboratory
- Summary of 1 year measurement with Phase I detector prototype

# GERmanium Detector Array for the search of neutrinoless $\beta\beta$ decays of $^{76}$ Ge

#### • PHASEI

- Enriched<sup>76</sup>Ge(86%)
  - HEIDELBERG-MOSCOW (5) and IGEX (3) detectors  $\rightarrow$  17.9 kg
- NonenrichedGe
  - Genius detectors (6)  $\rightarrow$  15 kg
- 1 year data taking
- Bkg=0.01 cts/keV/kg/year



RDA PHASE I detectors munited vertically into strings in low-mass Cu March 2007, DPG, Heidelberg support operated in LAr/LN,

#### Enricheddices

#### • In GERDA Detector Laboratory, LNGS ...



Energy resolution measured in their cryostats



## Opening and dimensions measurement



Keepunder vacuumin transportation container





Refurbishment at Canberra Semiconductor, Olen, Belgium

# GERDA phase I prototype dicce

#### • Non-enriched HP p-type Ge diccle to test

- GERDA phase I low mass support
- Cooling/warming cycles
- Test bench facility of the GERDA Detector Lab
- Detector stability in LAr/LN
- Refurbishment procedure



#### To be ready for the enriched diodes



Prototype diode (total mass 1.6 kg) refurbished by CANBERRA using the same technology as for the enriched diodes. The FWHM in a test cryostat is 2.2 keV at 1.332 MeV.

### GERDA phase I detector assembly

Lowness Guhder
Lowactivity Gu (80 g)
PIFE
Silicon



## GERDA phase I detector assembly

#### • Testing at Carberra

- Mounting procedure
- Signal and central HV contact quality
- Mechanical stability
- Spectroscopy performance







# Same resolution as obtained in a test cryostat!

### GERDA Detector underground Laboratory, INGS



Detector test bench, Rn'free bench' and dean bench. Ar level is monitored by weighting cells, Rn by Lucas cell (10 Bq/m<sup>2</sup>) and humidity is kept low (30%).

- •To test the enriched detectors
  - Clean roomlevel 10 000
  - Cleanbench and Rn'free bench' level 10











#### Detector 'health' monitoring

• Signal to HV resistivity measurement



• Test point, piccanneter and noise level recorded











### Detector health' monitoring

#### • Leakage arrent probe - I-V arve of dicodes





# GERDA phase I prototype dioce ... 1 year testing

- LN<sub>2</sub> and LAr
- 43 cooling-warning cycles
  - Toperformed detector mounting and/or electronics modifications
- 2 refurbishments
  - Newpassivation layer evaporated
  - Total exposure to cosmic rays ~ 60 hours
- Detector parameters stable over long termmeasurement
  - 2 months
  - Physics results: Limit on the radiative Ov ECEC decay of <sup>36</sup>Ar, O.Chkvorets

• Spectroscopy performance: 3.4 keV FWHM at 1.332 MeV

#### Enriched detectors status

 Refurbishment procedure is on going
 ANG1 and RG3 are refurbished and ready to be tested in GDL

- ANG 2-5, RG 1-2, Genius 1-6 are being refurbished at Canberra Semiconductor, Olen, Belgium

### Condusion

- Gerch Detector underground Laboratory, LNGS, is operated for GERDA phase 1
- Enriched detectors are being refurbishment
- 1 year testing with prototype detector
   Lowmass holder
  - Cooling/warning cydes
  - Operation in LAr and IN<sub>2</sub>
  - Refurbishment procedure
  - Long termneasurement