Das GERDA Experiment

Hardy Simgen

Max-Planck-Institut für Kernphysik Heidelberg

für die GERDA Kollaboration

$$\langle m_{\beta\beta} \rangle = |\sum_{j} m_{j} U_{ej}^{2}|$$

kohärente Summe

H. Simgen, DPG-Tagung Heidelberg 2007, T 502.3

Warum Germanium?

- Doppelbeta-Isotop ⁷⁶Ge!
- Anreicherung von ⁷⁶Ge ist möglich (Natürliche Häufigkeit: 7.4%)
- Germanium Halbleiterdioden
 - Quelle = Detektor
 - Exzellente Energieauflösung
 - Hochrein (Einkristall)
- Lange Erfahrung mit Low-Level Germanium Spektrometrie

Das Konzept von GERDA

- Ziel: Signifikante Untergrundreduzierung auf ≤10⁻³ cts/(kg⋅keV⋅y)
- Verunreinigungen in Vorgängerexperimenten hauptsächlich in Kryostat / Diodenhalterung

 \rightarrow "nackte" Dioden in verflüssigtem Gas

 Verflüssigte Gase eine der radioaktiv reinsten Substanzen überhaupt

(z.B.: BOREXINO-LN₂: <1 Rn-Atom in $4m^3$).

Phasen von GERDA

• Phase I:

- Verwendung existierender ⁷⁶Ge-Dioden der Hd-Moskau- und IGEX-Experimente (~15 kg ⁷⁶Ge)
- Untergrundfreie Überprüfung der KK-Evidenz
- Phase II:
 - Hinzufügen neuer Dioden (Total: ~40 kg ⁷⁶Ge)
 - Segmentierung
- Falls KK-Evidenz nicht bestätigt wird:
 - Ziel: O(1 Tonne) Experiment in weltweiter Kollaboration (Kooperation mit Majorana)

angenommene Energieauflösung:

$$\Delta E = 4 \text{ keV}$$

H. Simgen, DPG-Tagung Heidelberg 2007, T 502.3

GERDA Sensitivität

GERDA Design II

Zusätzliche innere Kupferabschirmung

> Germaniumdetektoren

Flüssiges Argon

Vakuumisolierter doppelwandiger Edelstahlkryostat

²²⁸Th Anforderungen

Radioaktive Reinheit des Kryostaten

- Edelstahl enthält U/Th-Verunreinigungen (und ⁶⁰Co)
- Zusätzliche Abschirmung durch innere Kupferplatten
- Benutzung von LAr statt LN₂
- Selektion von möglichst reinem Edelstahl (SS 1.4571)

Gemessene Edelstahlproben für den GERDA-Kryostaten

No	Specific activity [mBq/kg]			
110.	$^{228}\mathrm{Th}$	226 Ra	$^{40}\mathbf{K}$	60 Co
1 D	5.1 ± 1.0	2.9 ± 1.0	< 3.9	6.5 ± 0.5
2 G	< 0.27	< 0.35	< 1.1	13.0 ± 0.6
3 D	1.1 ± 0.4	< 0.84	< 3.3	15.1 ± 0.5
4 D	< 2.6	< 2.2	< 6.2	14.4 ± 1.0
5 D	< 1.1	< 1.2	< 2.8	11.6 ± 0.5
6 D	< 0.8	< 0.6	< 1.7	16.7 ± 0.4
7 G	< 0.20	< 1.3	< 2.8	45.5 ± 2.1
8 G	< 0.11	< 0.24	< 0.93	14.0 ± 0.1
9 G	< 0.41	< 0.74	< 1.1	13.8 ± 0.7
10 G	< 1.0	< 1.3	< 6.8	17.1 ± 0.7
11 G	1.5 ± 0.2	1.0 ± 0.6	< 0.81	18.3 ± 0.7

H. Simgen, DPG-Tagung Heidelberg 2007, T 502.3

N₂-Reinigung für BOREXINO

Argon-Reinigung von ²²²Rn

- Gleiches Prinzip wie Stickstoff-Reinigung
- Aber anfängliche ²²²Rn-Konzentration in Ar höher als in N₂
- In Gasphase erreicht:

²²²Rn in Ar: <1 Atom/4m³ (STP)

• Reinigung funktioniert auch in Flüssigphase!

GERDA Detektor-Labor am Gran Sasso

GERDA Phase I

- Detektorhalter mit geringer Masse entwickelt und getestet
- Viele Aufwärm- und Abkühlzyklen erfolgreich durchgeführt
- Vorhandene Dioden aus Kryostaten entfernt und überarbeitet (fast beendet)

GERDA Phase II

- September 2005: 37.5 kg ⁷⁶Ge produziert
 - ~87% Anreicherung
 - als GeO₂ vorliegend
 - Chemische Reinheit: 99.95 % (noch nicht ausreichend)
- Unterirdische Lagerung bis über weiteres Vorgehen entschieden wird
- Untersuchung verschiedener Optionen f
 ür Kristalziehen

Resultate für 18-fach segmentierten Detektor BP/NP 2500 2000 ²²⁸Th All events Single segment events Multi-1500 site Singlesite 1000 500 ՟ՠւոլոլի Ω 1560 1580 1600 1620 1640 1660 E [keV]

HV

 Unterdrückung einer 10 cm entfernten ²²⁸Th-Quelle

Untergrundreduzierung durch LAr-Szintillation

H. Simgen, DPG-Tagung Heidelberg 2007, T 502.3

Monte Carlo Simulationen

- Gemeinsamer
 Gerda/Majorana
 Simulationscode "MaGe"
 basierend auf GEANT4
- Umfangreiche Validierung der verwendeten Physik (Mehrzahl der Testaufbauten sind implementiert)

GERDA Zeitplan

- Fundament im Gran Sasso existiert
- Bald: Konstruktion der Bodenplatte des Wassertanks
- Sommer 2007: Anlieferung des Kryostaten
- Danach:
 - Fertigstellung des Wassertanks
 - Bau des GERDA-Gebäudes
 - Installation von Reinraum und Schleuse
- Ziel: Inbetriebnahme des Experiments in der zweiten Jahreshälfte 2008

