


The design...

Performance...

Conclusions

# A cryogenic detector for <sup>222</sup>Rn

M. Wojcika, G. Zuzelb

a) Institute of Physics, Jagellonian University, Cracow, Poland b) Max Planck Institute for Nuclear Physics, Heidelberg, Germany



The design...

Performance...

Conclusions

# 1. Selected detection techniques of <sup>222</sup>Rn

- Pre-concentration and counting using GALLEX/GNO low-level proportional counters
  - highly sensitive measurements of <sup>222</sup>Rn in nitrogen and argon (liquid nitrogen/liquid argon)
  - detection limit:  $\sim 0.5 \mu \text{Bq/m}^3$

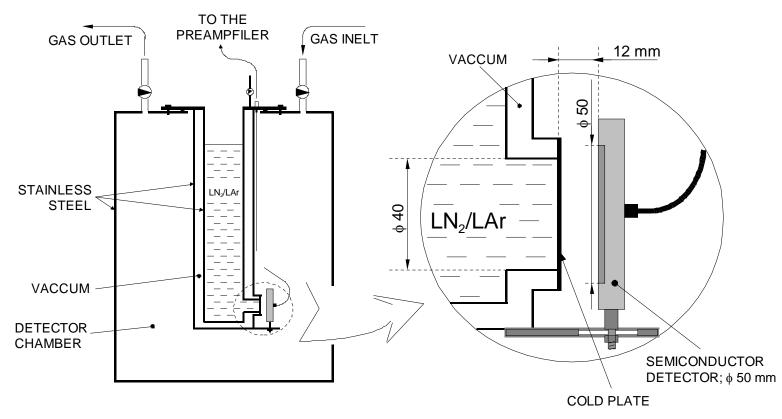
(Appl. Rad. Isot. 52 (2000) 691)

- Electrostating chambers
  - high sensitive online <sup>222</sup>Rn monitoring (clean rooms, clean benches etc.)
  - detection limit  $0.1 1 \text{ mBq/m}^3$

(NIM A460 (2001) 272)

- Scintillator Lucas cells
  - online <sup>222</sup>Rn monitoring (laboratories, air etc.)
  - insensitive to gas contaminations and easy to use detectors
  - detection limit:  $\sim 0.5 \text{ Bq/m}^3$

(NIM A345 (1994) 351)




The design...

Performance...

Conclusions

# 2. The design of the cryogenic detector



Detector : ORTEC ULTRA<sup>TM</sup> diode, 50 mm diameter

Cold plate: 40 mm diameter, 12 mm distance from the diode

Cooling : Liquid nitrogen


Volume: 65 L

Material : Electropolished stainless steel

GERDA General Meeting, November 13.-15. 2006 – Milano, Italy



## 3.1 Background



$$A_D = (0.93 \pm 0.31) \text{ cpd}$$

• Emanation of <sup>222</sup>Rn (detector components, welds etc.)

$$A_E = (23.6 \pm 3.5) \text{ cpd}$$

• Total

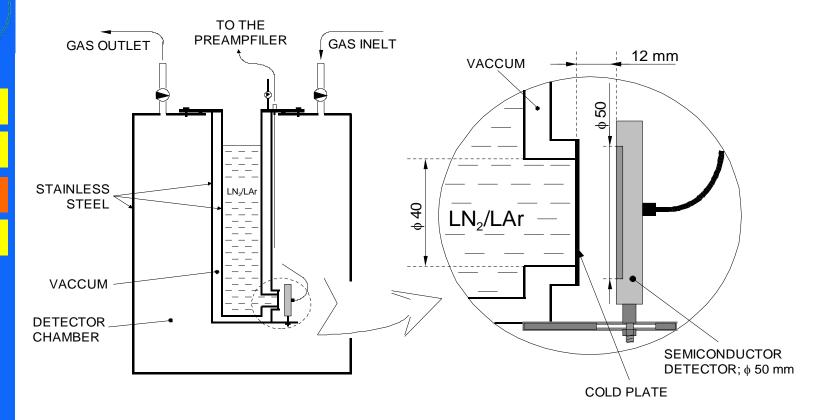
$$A_B = (24.5 \pm 3.5)$$
 cpd



<sup>222</sup>Rn detection

The design...

Performance...


## 3.1 Background – <sup>222</sup>Rn daughters deposition



<sup>222</sup>Rn detection

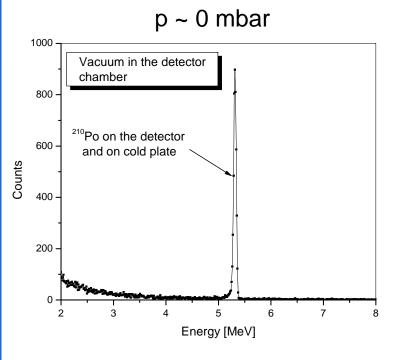
The design...

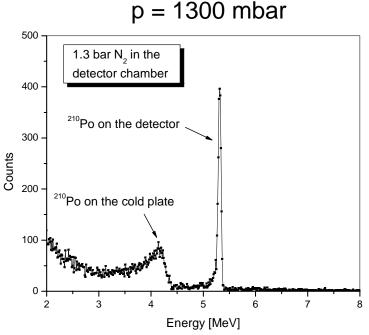
Performance...





## 3.1 Background after many test with high <sup>222</sup>Rn activities





<sup>222</sup>Rn detection

The design...

Performance...

Conclusions



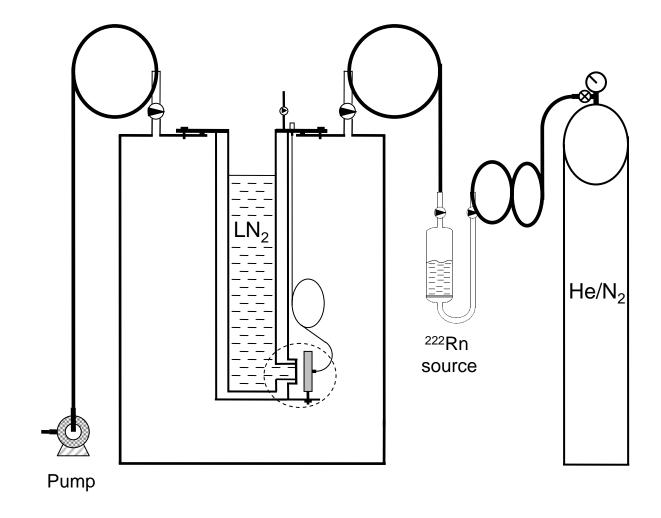


$$A_D = (174 \pm 6) \text{ cpd}$$

$$A_D = (57.6 \pm 2.6)$$
 cpd

~1/3 of the <sup>210</sup>Po is deposited on the detector: sputtering + low temperature collection

3.2 Absolute detection efficiency at low pressure (~ 2 mbar)






<sup>222</sup>Rn detection

The design...

Performance...





The design...

Performance...

Conclusions

## 3. Performance of the cryogenic detector

3.2 Absolute detection efficiency at low pressure (~ 2 mbar)

Nitrogen as a carrier gas

$$\varepsilon_N = (31.2 \pm 0.9) \%$$

• Helium as a carrier gas

$$\varepsilon_{He} = (31.7 \pm 0.9) \%$$

Average value

$$\varepsilon = (31.5 \pm 0.6) \%$$



3.3 Minimum Detectable Activity (MDA)



<sup>222</sup>Rn detection

The design...

Performance...

Conclusions

$$A_{0}(0)_{\min} = \frac{\lambda e^{\lambda t_{s}} \left(1 + \sqrt{1 + 4 \left(\Delta t^{2} \sigma_{A_{B}}^{2} + \Delta t A_{B}\right) \left(\delta^{2} - \delta_{\varepsilon}^{2}\right)}\right)}{2\varepsilon \left(1 - e^{-\lambda \Delta t}\right) \left(\delta^{2} - \delta_{\varepsilon}^{2}\right)}$$

 $A_B$  – background (total)

 $\sigma_{AB}$  – standard deviation of  $A_B$ 

 $\varepsilon$  – total detection efficiency

 $\delta_{\varepsilon}$  – standard deviation of  $\varepsilon$ 

 $\delta$  – assumed measurement accuracy

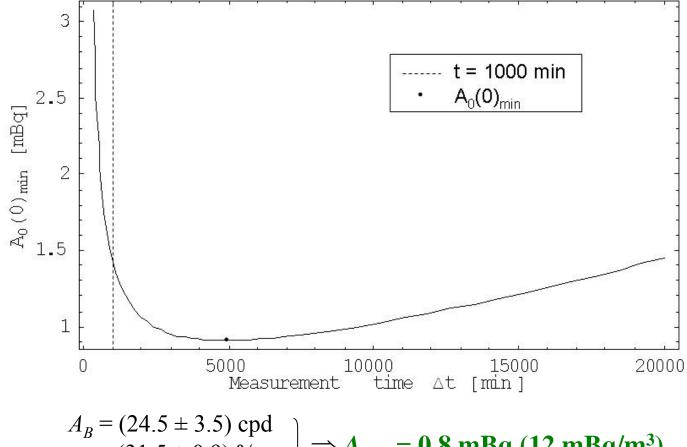
 $t_s$  – time between <sup>222</sup>Rn filling and measurement start

 $\Delta t$  – measurement time

 $\lambda - ^{222}$ Rn decay constant



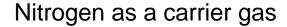
#### 3.3 Minimum Detectable Activity (MDA) - continued




<sup>222</sup>Rn detection

The design...

Performance...

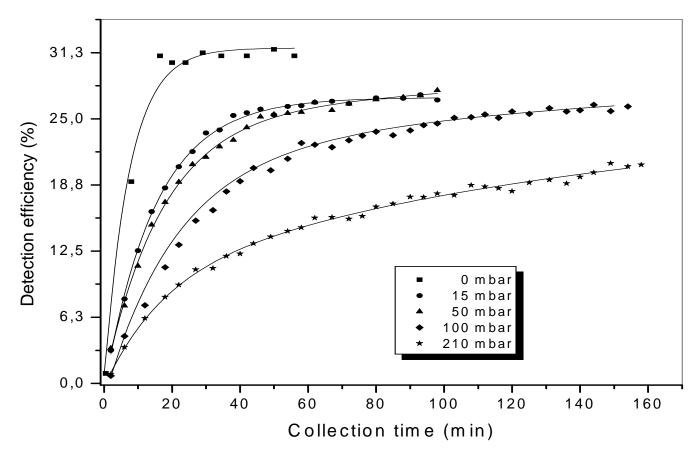

Conclusions



$$A_B = (24.5 \pm 3.5) \text{ cpd}$$
  
 $\varepsilon = (31.5 \pm 0.9) \%$   
 $t_s = 1.5 \text{ h}$   
 $\delta = 30 \%$   $\Rightarrow A_{min} = 0.8 \text{ mBq } (12 \text{ mBq/m}^3)$   
 $\Rightarrow A_{1000} = 1.3 \text{ mBq } (21 \text{ mBq/m}^3)$ 

GERDA General Meeting, November 13.-15. 2006 – Milano, Italy

## 3.4 Detection efficiency at higher pressures





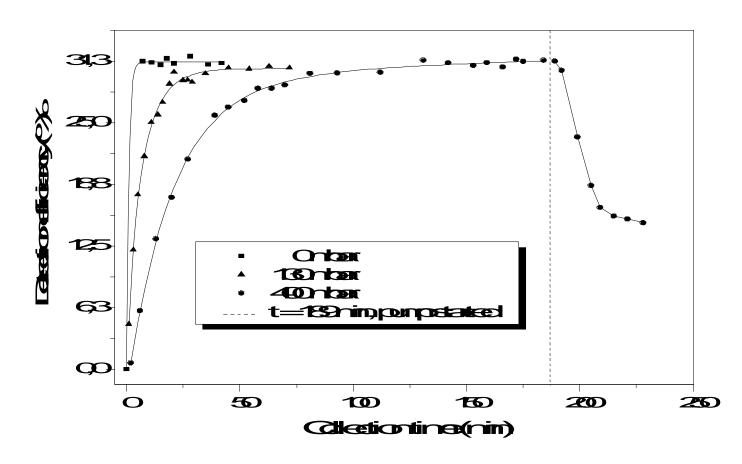

<sup>222</sup>Rn detection

The design...

Performance...



## 3.4 Detection efficiency at higher pressures - continued


Helium as a carrier gas



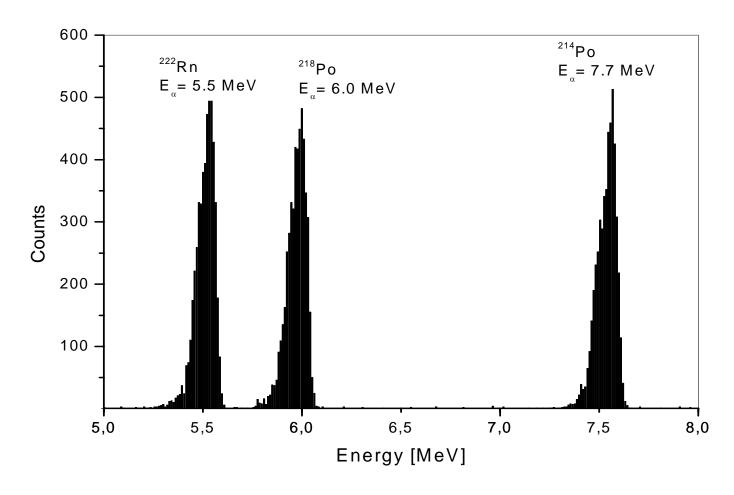
<sup>222</sup>Rn detection

The design...

Performance...



## 3.5 Energy spectrum




<sup>222</sup>Rn detection

The design...

Performance...

Conclusions



Energy resolution for <sup>222</sup>Rn: 105 keV (FWHM)



The design...

Performance...

Conclusions

- The prototype of the cryogenic detector works as expected
- Reached sensitivity is acceptable (12 mBq/m<sup>3</sup>) however the goal for a target detector is  $\leq 1$  mBq/m<sup>3</sup>
- Improvement possibilities:
  - background reduction
    - → careful construction and selection of materials
    - → use of an ultra-low background alpha detector
  - increase of the detection efficiency
    - $\rightarrow$  use of an alpha detector able to work at LN<sub>2</sub> temperature (smaller distances between the diode and the cold plate possible)
    - $\rightarrow$  use of liquid argon for cooling (higher <sup>222</sup>Rn collection efficiency for N<sub>2</sub>)
  - increase of the active volume of the detector up to 1 m<sup>3</sup>
- Cryogenic detector has a possibility to measure others Rn isotopes (219Rn/220Rn)
- Rn emanation tests from solids can also be performed