Task Group 2

- 1. 18-fold Phase-II prototype detector
 Crystal Properties
 Segment anti-coincidence
 - □Pulse Shape Analysis (PSA)
 - □Neutron spectrum
- 2. Outlook

I. Abt, K. Ackermann, A. Caldwell, M. Jelen, K. Kröninger J.Liu, X. Liu, B. Majorovits, S. Mayer, F. Stelzer, S. Vogt

MPI für Physik, München, Germany

18-fold Phase II prototype detector

n-type coaxial detector

- inner R 5mm, outer R 37.5mm height 69.8mm weight 1.63kg.
 3-fold in z, 6-fold in φ.
 FWHM core: 2.3keV (cold FET) segs: 2.5 - 4keV @1.3MeV
- -data taking 2006 03 to 08
- -100M events, gated Luminosity: 10⁻⁴ pb⁻¹

Gerda Collab., Nov. 13-15, 2006

One (half) event-display

Pixie4 DAQ, sampling rate 75MHz.

Core pulse

Gerda Collab., Nov. 13-15, 2006

Segment Position

Crystal Properties

Gerda Collab., Nov. 13-15, 2006

Crystal Properties

¹⁵²Eu 122keV line
Crystal axis effect on e/h drifting velocity

Gerda Collab., Nov. 13-15, 2006

Mirror charge asymmetry

Crystal Properties

Gerda Collab., Nov. 13-15, 2006

Data-MC comparison

Segment anti-coincidence

core & segments energy threshold 20keV

effective MC model:

e/h drifting direction affected by crystal axis

Single-segment events Segment anti-coincidence

Double-Escape Peak (DEP) events: mostly Single-Site Events (SSE)
Full photon energy peak events: mostly Multi-Site Events (MSE)

Suppression Factor

Segment anti-coincidence

SF: ratio of # events before and after single-segment cut

Pulse shape analysis

→Build SSE-dominant & MSE-dominant libraries
→Train PSA package
→ Apply trained PSA to ROI (2.039MeV)

PSA

DEP Pulse shape properties

PSA with DEP

Select DEP events to build SSE library

NN PSA on single-seg. events

PSA with DEP

Gerda Collab., Nov. 13-15, 2006

Single compton-scattering

PSA with SCS

Single compton-scattering (SCS) events for SSE library: 2.615MeV γ scatters at 72° \rightarrow 0.576MeV γ ' + 2.039MeV electron

use 2nd Ge detector: coincidence trigger & Sum=2.6MeV & Ecore at 2MeV

Canberra REGe detector

Single compton-scattering

PSA with SCS

Energy	Apply NN
2615	62±1%
DEP (1592)	95 ±1%
SCS	89 ±2%
2039 (trigger core only)	76±2%

NN trained with SCS again 2.6MeV (No segment anti-coincidence cut yet)

Gerda Collab., Nov. 13-15, 2006

Neutron spectrum

Study neutron interaction & verify MaGe simulation

- AmBe neutron source with 1GBq Am
- 2 days exposure

Using segmented detector

neutron spectrum

Conclusion & outlook

Many results from 18-fold n-type prototype detector papers to be published (→ K. Kroeninger's talk)
One 18-fold p-type detector arrives end of year.
One more 18-fold n-type detector ordered.

- Teststand with detectors in LN2/LAr Feb. 2007.
 Further measurement of IR-UV effect on crystal planned.
- Design of teststand with detector & source in vacuum on going.

Galatea

PSA vs. R90 DEP

Fraction of SSE events (R₉₀<2mm) DEP: 88%, 1620: 45% 2615: 30%, 2039: 66%

- ϵ : efficiency of SSE identification 98 \pm 2%
- η : efficiency of MSE identification 107±10%

PSA vs. R90 (SCS)

Fraction of SSE events (R₉₀<2mm) DEP: 95%, CSC: 80% 2615: 32%

- ϵ : efficiency of SSE identification 95 \pm 5%
- η : efficiency of MSE identification 90±10%

PSA + segment anti-coincidence PSA with DEP

Crystal Properties

Single compton-scattering

PSA with SCS

Gerda Collab., Nov. 13-15, 2006

Using segmented detector

neutron spectrum

Unique power of segmented detector