

Angelo Nucciotti

Dipartimento di Fisica "G. Occhialini",Università di Milano-Bicocca INFN - Sezione di Milano-Bicocca

direct neutrino mass measurement

Spectrometers and calorimeters

- ▷ ¹⁸⁷Re calorimetric experiment state-of-the-art
- > statistical sensitivity and systematics

▷ future calorimetric experiments: **MARE**

MARE-1: semiconductor thermistors and TES
 MARE-2

GERDA collaboration meeting, Dip. di Fisica, Univ. Milano-Bicocca, Milano, Nov 13-15, 2006

tool	measured quantity	present sensitivity	future sensitivity		
Cosmology CMB+LSS	$m_{\Sigma} \equiv \sum m_i$	0.7÷1 eV	0.05 eV	yes	large
Neutrinoless Double Beta decay	$m_{\beta\beta} \equiv \sum m_i U_{ei}^2 $	0.5 eV	0.05 eV	yes	yes
Beta decay end-point	$m_{\beta} \equiv (\sum m_i^2 U_{e_i} ^2)^{1/2}$	2 eV	0.2 eV	no	large
		model dependency systematic uncertainties			

Angelo Nucciotti 2

Neutrinos masses in single β and $\beta\beta$ -0 ν decays

3

Direct neutrino mass measurement

Experimental approaches for direct measurements

Spectrometers: source ≠ detector

Calorimeters: source ⊆ detector

β calorimeter

ideally measures all the energy *E* released in the decay except for the $\overline{v_e}$ energy: $E = E_0 - E_v$

Spectrometers present results

7

9

Calorimetry of beta sources

• calorimeters measure the entire spectrum at once \Rightarrow use low $E_0 \beta$ decaying isotopes to achieve enough statistics near the end-point \Rightarrow best choice ¹⁸⁷Re: $E_0 = 2.47$ keV $\Rightarrow F(\delta E = 10 \text{ eV}) \sim 2 (\delta E/E_0)^3 = 1.3 \times 10^{-7}$

Calorimetry drawbacks: pile-up

Cryogenic detectors as calorimeters

• $\Delta T(t) = E/C e^{-t/\tau}$ with $\tau = C/G$ and G thermal conductance

Resolution limit: cryogenic vs. ionization detectors

Ionization detectors

- \blacksquare measure only the energy that goes into ionization (\sim 1/3)
 - ▶ in semiconductors: energy to create an *e*-*h* pair $W_0 \approx 3 \text{ eV} \Rightarrow N_{eh} = E/W_0$
 - ► statistical fluctuations on N_{eh} limit the energy resolution: $\sigma_E = \sqrt{FN_{eh}}W_0 = \sqrt{FEW_0}$
 - ▶ in practice: △E_{FWHM}≈ 115 eV at 6 keV for silicon
- other limitations from electron transport properties (material restriction, purity...)

Cryogenic detectors

- measure the energy that goes into heat (100%)
 - ► no branching ⇒ no statistical fluctuations
 - resolution limit: random energy flow through G
 - ► statistical fluctuations of internal energy $U = \langle U \rangle \pm \Delta U_{rms}$

$$N_{ph} = \frac{\langle U \rangle}{\langle E_{ph} \rangle} = \frac{CT}{k_B T}$$
$$\Delta U_{rms} = \sqrt{N_{ph}} (k_B T) = \sqrt{k_B T^2 C}$$

• 1 mg of Si @ 100 mK • $C \sim 10^{-13} \text{ J/K} \Rightarrow \Delta U_{rms} \sim 1 \text{ eV}$

Thermal detectors for calorimetric experiments

metallic rhenium single crystals
 ▶ superconductor with T_c=1.6K

- NTD thermistors
- MANU experiment (Genova)
- dielectric rhenium compound crystals
 - Silicon implanted thermistors
 - MIBETA experiment (Milano)

Resistive thermometers: thermistors

- doped semiconductors at Metal-Insulator-Transition (N_c =3.74×10¹⁸ cm⁻³ for Si:P)
- at $T \ll 10 \text{K} \rightarrow \text{phonon assisted variable range hopping conduction (VRH)}$

 $\rho(T) = \rho_0 \exp(T_0/T)^{\gamma}$

 $ightarrow T_0$ increases with decreasing net doping N

► $T < 1 \text{ K} \Rightarrow \gamma = \frac{1}{2}$ (VRH with Coulomb Gap)

MANU experiment (1999)

- 1.6 mg metallic rhenium single crystal
- one detector only
- Ge-NTD thermistor
 ▷ △E=96 eV FWHM
 - symmetric and without tails
- 0.5 years live-time
 - \triangleright 6.0×10⁶ ¹⁸⁷Re decays above 420 eV
 - $m_{\nu}^2 = -462 + 579_{-679} eV^2$
 - $\,\triangleright\, m_{\,
 m v}$ < 19 eV (90 % C.L.)
- first observation of BEFS in ¹⁸⁷Re decay

MIBETA experiment array: 2002/03

MIBETA final β spectrum

β spectrum analysis

- fit function: $f(E) = [N_{\text{theo}}(E, m_v) + N_{\text{pile-up}}(E, m_v) + b(E)] \otimes R(E)$
 - \triangleright **N**_{theo}(**E**, **m**_v) first forbidden unique Buhring spectrum
 - $\triangleright N_{\text{pile-up}}(E, m_{\nu}) = A_{\beta} \tau_{R} [N_{\text{theo}}(E, m_{\nu}) \otimes N_{\text{theo}}(E, m_{\nu})] \text{ pile-up spectrum}$
 - b(E) polynomial background spectrum; R(E) response function
 - ▷ free parameters: N_{theo} and $N_{\text{pile-up}}$ normalizations, Q_{β} end-point, **b**(**E**) parameters, m_{ν}^2
- estimator: $\Xi^2 \stackrel{\text{def}}{=} 2\sum_i [f_i y_i y_i \ln(f_i/y_i)]$ with f_i fit values, y_i measured data
- Bayesian approach for non physical regions

MIBETA end-point analysis

from analysis of 8751 hours×mg data set

$$m_{\nu}^{2} = -112 \pm 207_{\text{stat}} \pm 90_{\text{sys}} \text{eV}^{2}$$

 \swarrow
 $m_{\nu} < 15 \text{ eV} (90 \% \text{ C.L.})$

C. Arnaboldi et al., Phys. Rev. Lett. 91 (2003) 161802 M. Sisti et al, NIM A 520 (2004) 125

- single gaussian: $\Delta E_{\text{FWHM}} = 28.5 \text{ eV}$
- fitting interval 0.9 ÷ 4.0 keV
- free constant background: 7×10^{-3} c/keV/h
- free pile-up fraction $f_{\text{pile-up}}$: 1.9×10⁻⁴

Angelo Nucciotti 20

Calibration: detector response function

X-ray peaks have tails on low energy side

 \blacklozenge 1~6 keV X-rays in AgReO4 have an attenuation length λ < 2 μm

 \Rightarrow are the response functions for X-rays and for β s from ¹⁸⁷Re decay the same?

need for a good phenomenological description of the X-ray peak shape

MIBETA: Measurement of response function (2004)

- external X-rays probe only detector surface
- escape peaks allow internal calibration
 - $> \lambda(6 \text{ keV}) \approx 3 \,\mu\text{m} \qquad \text{in AgReO}_4$
 - $\triangleright \lambda$ (70 keV) \approx 400 μ m
- escape peaks are broad because of natural widths of atomic transitions

0

20.0

40.0

energy [keV]

the response function is a possible source of systematic uncertainties in calorimetric neutrino mass experiments 80.0

60.0

Measurement with ⁴⁴Ti (2004)

MIBETA: BEFS analysis (2005)

BEFS: Beta Environmental Fine Structure

Modulation of the electron emission probability due to the atomic and molecular surrounding of the decaying nucleus: it is explained by the wave structure of the electron (analogous of EXAFS)

BEFS experimental evidence in ¹⁸⁷Re β decay

■ in AgReO₄ less pronounced than in metallic rhenium

C. Arnaboldi et al., Phys. Rev. Lett. 96 (2006) 042503

Systematics summary: calorimeters vs. spectrometers

Calorimetry systematics

- detector response function (energy dependence, shape,...)
- energy dependent background
- ¹⁸⁷Re decay spectral shape
- condensed matter effects: BEFS
- pile-up effects
- ...?

- Spectrometers systematics
 - decays to excited final states
 - energy losses in the source
 - e⁻ T₂ elastic scattering
 - spectrometer stability (HV)
 - source stability (density, potential, charging...)
 - energy dependent background
 - ...?

♦ completely different systematics!

Calorimetric experiment statistical sensitivity / 1

Calorimetric experiment statistical sensitivity / 2

$$\frac{\text{signal}}{\text{background}} = \frac{\left| F_{\Delta E}(m_v) - F_{\Delta E}(0) \right| t_M}{\sqrt{F_{\Delta E}(0) t_M + F_{\Delta E}^{pp} t_M}} = \sqrt{t_M} \frac{2A_\beta \frac{\Delta E^3}{E_0^3} \frac{3m_v^2}{2\Delta E^2}}{\sqrt{2A_\beta \frac{\Delta E^3}{E_0^3} + \frac{9}{5}\tau_R A_\beta^2 \frac{\Delta E}{E_0}}} = 1.7 \text{ for } 90\% \text{ C.L.}$$

 $f_{pile-up} = \tau_R A_{\beta} \ll \frac{10}{9} \frac{\Delta E^2}{E_0^2} \Rightarrow \text{pile-up is negligible}$

$$\sum_{90} (m_{\nu}) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_\beta t_M}}$$

$$f_{pile-up} = \tau_R A_\beta \gg \frac{10}{9} \frac{\Delta E^2}{E_0^2}$$

 \Rightarrow pile-up dominates background

$$\sum_{90} (m_{\nu}) \approx 0.87 \sqrt[4]{\frac{E_0^5 \tau_R}{t_M \Delta E}}$$

¹⁸⁷Re calorimetric experiment statistical sensitivity

Statistical sensitivity: MC simulations

Simulation inputs

- \triangleright $N_{ev} = N_{det} \times t_M \times A_{\beta}$ total number of events
 - *N*_{det} number of detectors
 - \mathbf{v} \mathbf{t}_{M} measuring time
 - $\sim A_{B}^{187}$ Re activity for single detector
- $\triangleright \mathbf{f}_{pile-up} \approx \mathbf{\tau}_{R} \times \mathbf{A}_{\beta}$ pile-up event fraction
 - $\tau_{\rm R} \approx 3\tau_{\rm rise}$ time resolution for pile-up identification
- ▷ **g(E):** gaussian energy resolution function
 - $\checkmark \Delta E$ FWHM detector energy resolution

MC simulations results: importance of statistics

total MIBETA statistics: 1.6×10^7 decays

MC study of systematics: BEFS case

31

A project for a New Rhenium Experiment: MARE

goal: a sub-eV direct neutrino mass measurement complementary to the KATRIN experiment

MARE-1

new experiments with large arrays using available technology and ready to start immediately (2007)

300

element

array

Transition Edge Sensors Semiconductor Thermistors

MARE-2

> very large experiment with a m_{ν} statistical sensitivity close to KATRIN but still improvable: 5 years from now for further detector R&D

2 ~ 4 eV

 m_{ν}

sensitivity

MARE Project Collaboration

MARE: Microcalorimeter Arrays for a Rhenium Experiment

Università di Genova e INFN Sez. di Genova Goddard Space Flight Center, NASA, Maryland, USA Kirkhhof-Institute Physik, Universität Heidelberg, Germany Università dell'Insubria, Università di Milano-Bicocca e INFN Sez. di Milano-Bicocca NIST, Boulder, Colorado, USA ITC-irst, Trento e INFN Sez. di Padova PTB, Berlin, Germany University of Miami, Florida, USA Università di Roma "La Sapienza" e INFN Sez. di Roma1 SISSA, Trieste Wisconsin University, Madison, Wisconsin, USA

33

Angelo Nucciotti

http://crio.mib.infn.it/wig/silicini/proposal/

MARE project: Working Group structure

MARE-1: TES vs. silicon implanted thermistors

aim: high statistics measurement with a ready-to-use technology
 few eV statistical sensitivity in few years
 investigate systematics in thermal calorimeters with 10⁹÷10¹⁰ events
 cross-check spectrometer results

MARE-1 SEMICON (MIBETA2) U. Milano-Bicocca / INFN Sez. Mi-Bicocca U. Insubria / INFN Sez. Mi-Bicocca ITC-Irst / INFN Sez. Padova U. Wisconsin, Madison NASA/Goddard

 about 300 element arrays
 well known silicon implanted thermistor technology
 AgReO₄ crystals MARE-1 TES (MANU2) U. Genova / INFN Sez. Genova about 300 element arrays
newly developed transition edge sensors
Re crystals

MARE-1 critical parameters for few eV m, sensitivity

MARE-1 SEMICON: NASA/Goddard XRS2 silicon array

6×6 array

AgReO₄ crystals

XRS2 array optimized for X-ray spectroscopy

MARE-1 SEMICON detectors

- AgReO₄ has larger heat capacity
- operating temperature must be higher

Low temperature electrical properties of thermistors

Silicon implanted thermistors electron-phonon coupling G_{eph} sets an intrinsic limit to detector resolving time $\tau_R \approx 3\tau_0$

 $C_{\rm e} \propto$ thermistor volume $G_{\rm e-ph} \propto$ thermistor volume

MARE-1 SEMICON detector optimization

• NASA/Goddard array XRS2-2 C3 • 10 AgReO₄ "flattened" crystals • $m \approx 0.386 \div 0.506$ mg • crystal-sensor coupling tests • best operating *T* around 90mK • $\Delta E = 28 \text{ eV}, \tau_{R} = 260 \mu \text{s}$

read-out electronics not yet optimized

MARE-1 detector optimization: ΔE vs. τ_R

10e9 events, no bkg, R4X detectors (1,2,3,4,5,10)

target MARE-1 statistics is about $7 \times 10^9 \Rightarrow 1.6$ times better than above sensitivity

42 **Angelo Nucciotti**

MARE-1 TES: Superconducting transition edge sensors

- superconductor thin films used inside the phase transition at T_c
 - ▶ pure superconductors: Ir (T_c = 112 mK), W (T_c = 15 mK), ...
 - ▶ metal-superconductor bilayers ⇒ tunable T_c (20÷200 mK) : Mo/Cu, Tl/Au, Ir/Au, ...
 - high sensitivity ($A \approx 100$) \Rightarrow high energy resolution
 - high electron-phonon coupling \Rightarrow high intrinsic speed
 - low impedance ⇒ SQUID read-out ⇒ multiplexing for large arrays

MARE-1 TES: statistical sensitivity

MARE-2

- 50000+ detectors gradually deployed
 - ▷ 5 arrays with 10000 detectors each
 - ▷ one array deployed per year for the first 5 years
 - arrays distributed in many laboratories around the world
 - \triangleright about $10^{13} \div 10^{14}$ events after 5 years
- technical requirements not far from that for next generation X-ray space observatory (i.e. XEUS, Con-X)

45

MARE-2 MC simulations for 0.2 eV m_v sensitivity

▷ statistics N_{ev} ▷ energy resolution ΔE ▷ time resolution Δt

Sensor R&D for MARE-2: Goddard, NIST, Heidelberg,...

- **fast** devices for high single pixel activity A_{β} and low pile-up f_{pp}
- high energy resolution with large heat capacity absorbers
- multiplexing for very large number of pixel

47

MMC – Magnetic Micro Calorimeters (Heidelberg)

paramagnetic sensor weak thermal link $\delta M = \frac{\partial M}{\partial T} \delta T = \frac{\partial M}{\partial T} \frac{E_{\gamma}}{C_{\text{ges}}}$

X-ray

- suitable for large capacity absorbers
 very fast ∼µs
- ► high energy resolution ~eV

sensor design optimization for MARE-2
rhenium absorbers is in progress
\$> meander pick-up coils without external B field

- \odot thermal calorimetry of ¹⁸⁷Re decay can give sub-eV sensitivity on m_{γ}
- \odot the MARE project has taken off
- MARE-1 intermediate scale experiments are starting
- \odot R&D for MARE-2 large scale sub-eV experiment is starting
 - MMC R&D is already in progress
 - ▷US groups are applying for fundings (TES, MUX, ... R&D)
 - ▷New ideas are coming up (MKIDs)

More realistic detector model / 1

solution for
$$G_{ab} \ll G_{at}$$

 $\Delta T_t(t) \approx \frac{E_0}{C_a + C_t} \left[e^{-t/\tau_1} - e^{-t/\tau_0} \right]$
 $\tau_0 \approx \frac{1}{G_{at}} \left(\frac{C_a C_t}{C_a + C_t} \right); \quad \tau_1 \approx \frac{1}{G_{ab}} (C_a + C_t)$

power flow in the small signal approximation

$$P = \frac{dE}{dt} = C\frac{dT}{dt} \approx G\Delta T$$

$$C_{a}\frac{dT_{a}}{dt} = -(T_{a}-T_{t})G_{at}-(T_{a}-T_{b})G_{ab}+E_{0}\delta(t)$$

$$C_{t}\frac{dT_{t}}{dt} = -(T_{t}-T_{a})G_{at}$$

MARE

Microcalorimeter Arrays for a Rhenium Experiment

<u>F. Gatti</u>, G. Gallinaro, D. Pergolesi, P. Repetto, M. Ribeiro-Gomez University of Genova, Department of Physics, and INFN-Genova, Italy

> R. Kelley, C.A. Kilbourne, F. S. Porter Goddard Space Flight Center, NASA, Maryland, USA

C. Enss, A. Fleischmann, L. Gastaldo University of Heidelberg, Kirkhhof-Institute of Physics, Germany

L. Foggetta, A. Giuliani, M. Pedretti, M. Prest, S. Sangiorgio University of Insubria (Como), Department of Physics and Mathematics, and INFN-Milano, Italy

C. Arnaboldi, C. Brofferio, S. Capelli, F. Capozzi, O. Cremonesi,E. Fiorini, P. Gorla, S. Kraft, C. Nones, A. Nucciotti, M. Pavan,G. Pessina, E. Previtali, D. Schaeffer, M. Sisti

University of Milano-Bicocca, Department of Physics, and INFN-Milano, Italy

K. D. Irwin National Institute of Standards and Technology, Boulder, Colorado, USA, USA

> B. Margesin, A. Monfardini ITC-irst, Trento, and INFN-Padova, Italy

J. Beyer Physikalisch-Technische Bundesanstalt, Fachbereich 7.51, Berlin, Germany

> M. Galeazzi University of Miami, Florida, USA

P. de Bernardis, M. Calvo, S. Masi University of Roma "La Sapienza", Department of Physics, and INFN-Roma, Italy

S. Petcov

SISSA - Scuola Internazionale Superiore Studi Avanzati, Trieste, Italy

<u>K. Heeger</u>[†], R. Maruyama, D. McCammon University of Wisconsin, Madison, Wisconsin, USA

*Spokesmen †Co-spokesmen

Angelo Nucciotti 51

Silicon micromachined detectors @ IRST

¹⁸⁷Re calorimetric experiment statistical sensitivity

