Background performance of the GERDA phase II with the "backup" detectors

Background performance of the GERDA phase II with the "backup" detectors

- 1. Motivation
- 2. "Backup" detector definition
- 3. Assembly geometry
- 4. Irradiation sources
- 5. Results for AC suppression in different configurations
- 6. Results for BI
- 7. AC suppression versus a detector position
- 8. Few words about reference detectors
- 9. To be done
- 10. Conclusion

Motivation

The considered task was formulated by L. Bezrukov and supported by A. Caldwell when the first difficulties with big enriched crystal production were met by TG2.

We are trying to see **quantitatively** how the background conditions of the GERDA phase II would spoil if big segmented detectors are not affordable for any reason and **small non segmented detectors** are used.

In the optimistic case of the big detectors realization, the present work caries information about "partial" advantage achievable due to initially planned detectors size and segmentation.

"Backup" detector definition

MaGe model for small detectors:

- Height: 6 cm
- Diameter: 6 cm
- Mass: 0.9 kg

"Backup" detector definition: Dimensions of surrounding details

		1 kg det	ectors	2 kg detectors	
Detail	Material	Volume, cm ³ /det	Mass, g/det	Volume, cm ³ /det	Mass, g/det
Detector	EnrGe	164	901	394	2169
Cable1	Copper	0.00681	0.0610	0.163	1.46
Cable3	Copper	0.0012	0.0108	0.0216	0.194
Holder Copper	Copper	1.71	15.4	4.062	36.4
Holder Teflon	Teflon	1.13	2.45	1.51	3.27
El. Board	Copper	2.68	24.1	4.77	42.8
El. Box	Copper	0.22	1.99	4.00	35.8
El. Bars	Copper	2.86	25.7	5.09	45.6

Assembly geometry

- Standard **21** detectors assembly for the **big segmented detectors**
- Symmetric configuration of 57 small non segmented detectors
- Gaps between the small detectors are 3.75 cm in vertical direction and 0.75 cm in the horizontal one
- Total masses are 46 kg for array of the big detectors and 51 kg for the small ones
- We accepted this mass difference keeping in mind that the same amount of material may be converted into smaller detectors with a higher efficiency

Irradiation sources

- Ge-68, Co-60 uniform in the crystal
- Bi-214, TI-208 uniform on the crystal surface
- Bi-214, TI-208, Co-60 uniform in the surrounding details
- Gamma energies 2039, ..., 2614 keV isotropic from the sphere

In reality the gamma flux is concentrated around a direction of the thinnest shield, but our task should not be sensitive to this distinction <u>A. Denisov</u>, S. Belogurov for GERDA meeting, Milano 2006

Results for AC suppression in different configurations

Results for AC suppression in different configurations: Spectra for different sources in small

Internal sources

Object	Source	2.1 kg <mark>SP</mark> *10 ⁶	0.9 kg SP*10 ⁶	AC 0.9 kg SP*10 ⁶	det. AC 2.1 kg SP*10 ⁶	segm. AC 2.1 kg SP*10 ⁶
	Co-60	1632	1127	330	720	56
Crystal	Ge-68	2366	1658	836	1510	194

SP is the probability to see an event in 10 keV window around 2039 keV.

Detector surface

Object	Source	2.1 kg SP*10 ⁶	0.9 kg SP*10 ⁶	AC 0.9 kg SP*10 ⁶	det. AC 2.1 kg SP*10 ⁶	segm. AC 2.1 kg SP*10 ⁶
Crystal Surface	Bi-214	780	660	310	510	220
	TI-208	1840	2340	200	290	80

Neighboring details

Object	Source	2.1 kg SP*10 ⁶	0.9 kg SP*10 ⁶	AC 0.9 kg SP*10 ⁶	det. AC 2.1 kg SP*10 ⁶	segm. AC 2.1 kg SP*10 ⁶
	Bi-214	520	570	300	340	170
Cable1	TI-208	1730	1970	220	380	150
	Co-60	580	440	80	230	30
	Bi-214	270	240	110	130	60
Holder	TI-208	1480	1780	240	350	130
Cobbei	Co-60	280	270	100	160	< 10
Holder	Bi-214	220	280	90	140	20
Teflon	TI-208	1810	2110	270	330	110
El Boord	Bi-214	3	8	5	2	< 1
EI. Board	TI-208	44	57	23	23	12
El. Bars	Bi-214	20	< 10	< 10	20	10
	TI-208	120	90	30	20	20

External gammas

Energy MeV	0.9 kg det. AC SP*10 ⁶	2.1 kg segm. AC SP*10 ⁶	Ratio
2.039	22220	8105	2.742
2.100	161	42	3.833
2.200	396	129	3.070
2.300	786	463	1.698
2.400	539	274	1.967
2.500	414	224	1.848
2.614	328	186	1.763

Example for 2.614 MeV γ passing the 20 interaction lengths

Ratio of non scattered gammas to scattered (E>2000 keV) is 0.272

External gammas

Convolution of such a spectrum with the numbers from the table gives a factor

2.35

difference in background counting rate between big segmented and small detectors

Results for BI

Object	Source	2.1 kg sAC SP*10 ⁶	0.9 kg AC SP*10 ⁶	Activity assumption	2.1 sAC BI, gbu	0.9 AC BI, gbu	Ratio
Crystal	Co-60	56	330	0.507 μBq/kg (20 days, 6 nuc/day/kg)	0.896	5.28	5.89
volume	Ge-68	194	836	4.439 μBq/kg (25 days, 5.6 ncl/day/kg)	27.16	117.04	4.31
Crystal	Bi-214	220	310	1.0 nBq/cm² (1 μm, 1 mBq/kg)	1.04	2.03	1.95
surface	TI-208	80	200	1.0 nBq/cm ² (1 μm, 1 mBq/kg)	0.378	1.31	3.46

Results for BI

Object	Source	SP*10 ⁶ , 2.1 sAC	SP*10 ⁶ , 0.9 AC	Activity assumption μBq/kg	2.1 kg sAC BI, gbu	0.9 kg AC Bl, gbu	Ratio
	Bi-214	170	300	10	0.036	0,0064	0.18
Cable1	TI-208	150	220	10	0.032	0,0047	0.15
	Co-60	30	80	10	0.0064	0.0017	0.27
	Bi-214	60	110	10	0.32	0.59	1.86
Holder	TI-208	130	240	10	0.69	1.3	1.87
Copper	Co-60	< 10	100	10	-	0.54	-
Holder	Bi-214	20	90	10	0.01	0.08	8
teflon	TI-208	110	270	10	0.052	0.23	4.4
El Board	Bi-214	< 1	5	10	-	0.014	-
EI. DUATU	TI-208	12	23	10	0.025	0.065	2.6
El Bara	Bi-214	10	< 10	10	0.044	-	-
El. Bars	TI-208	20	30	10	0.088	0.18	2.0

AC suppression versus a detector position

Internal source							
	Co-6	60, SP	*10 ⁶				
7		F	२				
Z	0	1	2	3			
0	119	145	285	380			
1	234 257 420 500						
	Ge-6	68, SP	*10 ⁶				
7	R						
Z	0	1	2	3			
0	542	542 598 848 959					
1	717	754	968	1043			

AC suppression versus a detector

position

Neighboring sources: Holder copper						
	Bi-2	214, SP	*10 ⁶			
7		R	2			
2	0	1	2	3		
0	60	70	100	120		
1	90	80	110	100		
	TI-2	08, SP	*10 ⁶			
7	- R					
2	0	1	2	3		
0	70	130	230	300		
1	200	210	290	260		

<u>A. Denisov</u>, S. Belogurov for GERDA meeting, Milano 2006

AC suppression versus a detector position

Internal Co-60 for 95 small detectors, SP*10 ⁶								
7		R						
Z	0	1	2	3				
0	102	138	296	367				
1	116	148	294	397				
2	236	261	433	502				

Few words about reference detectors

In the beginning of the GERDA phase II, when the $2\beta 0\nu$ signal is not seen yet the main goal is to reduce the background in the enriched detectors. Hence future "reference" detectors should be used here just as an active shield. Because of worse background conditions they can't serve at that time as real reference detectors.

In the case of a positive signal, the assembly should be rearranged and reference detectors should be placed in the middle of the assembly, while enriched detectors may be used for an active shielding. In principle this consideration should be valid for both types of the detectors.

To be done

Some additional simulations should be done in order to accomplish the study of the "backup" detectors. These are:

I. Muon induced backgrounds

- muons crossing the assembly

- muon induced EM showers touching the assembly

- muon induced neutrons

II. Inclusion into the assembly of the real size phase I detectors.

Conclusion

Overall background index for the assembly of small non segmented detectors would be 3-4 times worse than for the standard GERDA Phase II configuration. This fact strongly encourages the collaboration to struggle for realization of big segmented detectors. However failing to do this wouldn't have catastrophic consequences.