

Università degli Studi di Milano

S. Riboldi, A. Pullia, F. Zocca, C. Boiano, R. Bassini, C. Cattadori

Charge Preamplifier with Fully Differential Line Driver Integrated in AMS CMOS 0.8um CZX Tech. for the GERDA Experiment

GERDA Meeting, Milano, 14/11/2006

Schematic design

- Dual Power Supply (+2.5v / -2.5v), no additional Vref required
- Fully Differential Circuit Design for both Preamp. and Line Driver
- Tunable system
- Can operate with continuous reset (external Rf) or pulsed reset

PZ1 IC Layout

Planned activity

Manufacturing of the preliminary board : Done ۲ IC Functionality test : Done ۲ Separate test of Preamplifier (PRE) and Differential Line Driver (DLD) Results show that Bandwidth and Noise of PR are not limited by DLD Preliminary characterization of PRE+DLD with Rf : Done ٠ Analysis of: Bandwidth, Noise, (Linearity TDB with prototype board) Manufacturing of the prototype board (2 layer PCB) : TBD ٠ (Suitable also for operation @ T=77K) Characterization of PRE+DLD with Rf and Pulsed Reset : TBD ٠ Charact. of PRE+DLD with Rf and Pulsed Reset @77K : TBD ٠

Preliminary IC board

PRE+DLD Output (+)

Pulse amplitude \approx 1 Mev in Ge

50 Ohm load after 4 meters of 50 Ohm coaxial cable Rise time \approx 24 ns (27 ns for 2 v, maximum pulse amplitude) Dynamic range \approx 40 Mev in Ge Fall time \approx 1.2 ms (Cf \approx 1.2 pF; Rf \approx 1 Gohm)

Noise analysis

PRE+DLD signal shaping: how to?

Digital shaping technique to fully exploit the potential of PRE+DLD; DAQ systems advantages and drawbacks must be taken into account

Standard digital processing: e.g. moving window deconvolution, trapezoidal shaping Experiment customized digital processing: e.g. optimum shaping

PRE+DLD signal shaping: how to?

(FIR) filters with arbitrary time and frequency constraints and noises. IEEE TNS, 2003

PRE+DLD SHAPED signal

Characteristics of shaped signals: (1000 pulses with amplitude ≈ 1 Mev in Ge shown)

- Evidence of TRUE FLAT TOP (3 samples large, as required)
- FINITE DURATION (200 samples, as required)
- Evidence of 1/(f)ⁿ NOISE (cusp-like shaped signal)

Preliminary noise estimation of PRE+DLD SHAPED signals vs SHAPING time

BLUE marker: shaping filter by DPLMS

compared to

Quantization error by FLASH ADCs is reduced by the digital shaper according to the BIT GAIN value. BIT GAIN = $-0.5 \log_2(sum(x^2))$

The effective n.of bits after shaping becomes: e.g. 14 (FLASH ADC) + 2 (BIT GAIN) = 16

RED marker: standard digital filter with trapezoidal shape (shows evidence of 1/(f)ⁿ noise)

Planned activity

- Manufacturing of the prototype board (2 layer PCB) (Suitable also for operation @ T=77K)
 6 W
- Characterization of PRE+DLD with Rf and Pulsed Reset
 4 W
- Charact. of PRE+DLD with Rf and Pulsed Reset @77K
 4 W

Thank you!