BEGe project

Results from detector operations and outlook

MPI für Kernphysik • Heidelberg LNGS • Gran Sasso

- 1. BEGe in LAr test results
- 2. Constraints on front-end bandwidth Marik Barnabé Heider • Dušan Budjáš • Stefan Schönert
- 3. Upcoming characterisation of ^{dep}Ge BEGe detectors
 Matteo Agostini Enrico Bellotti Dušan Budjáš Carla Cattadori Alexander Hegai • Stefan Schönert • Michal Tarka • Assunta di Vacri

1. BEGe in LAr test results

2. Constraints on front-end bandwidth

3. Upcoming characterisation of depGe BEGe detectors

BEGe in LAr: GDL test bench

- 1st stage preamp from HdM (in Ar gas in dewar neck)
- warm 2nd stage
- 30 ns rise time

BEGe in LAr: short term test 12. 2009

10⁴ Goals: ۲ Leakage current (pA) 01 01 01 01 working in LAr? HV scan \triangleright 1st cooling: **....** 4000 ٠ 2nd cooling high LC, some visible signals, but no spectrum \rightarrow cure: 3 x methanol bath 10^u 2000 3000 1000 4000 5000 0 High voltage (V) 10⁸ 2nd cooling: • 4000 ⁶⁰Co line LC~50 pA 1.8 keV 3000 FWHM ~1.8 keV (FWHM) 10^{6} 2000 Pulser Counts 1.0 keV (FWHM) 1000 0 1325 1330 1335 1340 10² 10⁰ 200 400 600 800 1000 1200 1400 4 Energy (keV)

BEGe in LAr: long term test 2. 2010

6

BEGe in LAr: overall system stability

BEGe in LAr: pulse-shape discrimination results

8

1. BEGe in LAr test results

2. Constraints on front-end bandwidth

3. Upcoming characterisation of depGe BEGe detectors

BEGe PSA constraints on front-end bandwidth

- test of PSD performance in dependence on signal bandwidth
- using recorded experimental pulse-data
- step 1: FE bandwidth restriction simulated by various filter methods

step 2: PSD on filtered pulses (DEP acceptance always fixed at 90%)

1. BEGe in LAr test results

2. Constraints on front-end bandwidth

3. Upcoming characterisation of depGe BEGe detectors

Characterisation of depGe BEGe detectors

Coordinators: Dušan, Assunta

- Participants from several GERDA institutes
- Goal: characterise spectroscopic, charge collection and PSD performance of the new BEGe detectors

Work plan:

- high-voltage scanning
- energy resolution measurements
- dead-layer and active volume determination
- PSD performance tests
- stability measurement
- > Place: LNGS, laboratory at Autorimessa 2 (above ground)
- First detector arrival: in the next days

Characterisation of depGe BEGe detectors

> Schedule:

under review (permanently...)

week	W 1 (GERDA meeting)					W 2						W3(₩4							
day	1.3.	2.3.	3.3.	4.3.	5.3.	8.3.	9.3.	10.3.	11.3.	12.3.	15.3.	16.3.	17.3.	18.3.	19.3.	22.3.	23.3.	24.3.	25.3.	26.3.
task1	equipment a	nd lab p	reparation	1aMCoAm	1dMCoArr	1eMB:	а	1fMCo	1dFCoAm	1gF	Th	1hi	F(M)Am_c		1gF	Co + Th + b	backgroun	d?	1bFAm_c	1cFCs
task2	MCA syste	em checl	k with LNG	S BEGe	FADC ch	neck with LNG	S BEG	e (incl. 228	3Th PSD)											
Dusan																				
Assunta																				
Matteo																				
Michal																				
Alexander																				
Alexander																				

Notes:

tasks should include time for measurement analysis

code of the task: detector number; measurement code (small letter, see .doc file); DAQ system (FADC or MCA, F or M); source (with _c when collimated)

											_									
week	W 5 Easter				ter W 6							W 7		W 8						
day	29.3.	30.3.	31.3.	1.4.	2.4.	5.4.	6.4.	7.4.	8.4.	9.4.	12.4	. 13.4	. 14.4.	15.4.	16.4.	19.4.	20.4.	21.4.	22.4	. 23.4.
task1											1јМСоА	m (stability)،	y 1 month)							
task2								2aMCoArr 2	dMCoArr	2eN	ИВа	2fMCo	2dFCoAm		2gFTh+	Co + backg	ground	2	2cFCs	2bFAm_c
Dusan																				
Assunta																				
Matteo																				
Michal	?	?	?																	
Alexander																				

week	W 9			W 10	W 11		
day	28.4. 29.4. 30.4.	1.5. 2.5.	. 5.5. 6.5.	7.5. 8.5. 9.5.	12.5. 13.5. 14.5.	15.5. 16.5.	
task1	1iFTh_c						
task2	2hMAm_c ?			2jN	1CoAm (stability)		2iFTh_c
Dusan							
Assunta							
Matteo							
Michal							
Alexander							

Summary and conclusions

- BEGe detector succesfully operated in LAr: 1.8 keV FWHM, stable operation, PSD performance same as in vac. cryostat
- PSD requirements on front-end bandwidth not very demanding: ~100 ns risetime sufficient
- Ready for acceptance testing campaign of the new ^{dep}Ge BEGe detectors, characterisation of the 1st detector starting after the meeting

Backup slides

BEGe in LAr: short term test 12. 2009

BEGe in LAr: short term test 12. 2009

Region	LAr/GDL	Vacuum/Hd
DEP	0.90 ± 0.02	0.90 ± 0.02
1621 keV	0.12 ± 0.02	0.11 ± 0.01
SEP	0.07 ± 0.01	0.06 ± 0.01
2614 keV	0.102 ± 0.001	0.095 ± 0.001
$Q_{\beta\beta}$	0.42 ± 0.03	0.42 ± 0.02

IIR Butterworth filter, 12 dB drop

IIR Butterworth filter, 24 dB drop

Characterisation of ^{dep}Ge BEGe detectors

Measurements list

Mea	asurement	Source	DAQ
a. 1	high voltage scanning (incl. "bathtub region")	60 Co (+ 241 Am) + pulser	MCA
b. 1	high voltage scanning for average PS check	collimated ²⁴¹ Am	FADC
c. 1	high voltage scanning with a single-peak source	¹³⁷ Cs	FADC or MCA
d. (energy resolution, peak tails, etc. check (shaping constant scan, predetermined number of events)	60 Co (+ 241 Am) + pulser	MCA and FADC
e. (dead layer determination	¹³³ Ba (or ²⁴¹ Am)	MCA
f. a	active volume determination	⁶⁰ Co	MCA
g.]	PS discrimination (PSD) performance tests	²²⁸ Th, ⁶⁰ Co + background	FADC
h. (charge collection and dead layer variation; lateral and front surface scan	collimated ²⁴¹ Am + positioning device	MCA and FADC
i. (check of PSD sensitivity loss near n+ electrode	collim. ²²⁸ Th, background	FADC
j. 1	long-term performance stability test	60 Co (+ 241 Am) + pulser	MCA