

bmb+**f** - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Neutron Activation of ⁷⁶Ge

Georg Meierhofer

people involved:

P. Grabmayr J. Jochum

P. Kudejova L. Canella

J. Jolie

πп

a FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

IKP, Universität zu Köln

Kepler Center for Astro and Particle Physics University Tübingen

Kepler Center for Astro and Particle Physics

Eberhard Karls Universität Tübingen

Outline

Introduction

- Neutron capture and decay processes
- Background by neutron capture on ⁷⁶Ge
- Measurements with cold neutrons
 - Cross section of the ⁷⁴Ge(n,γ) and ⁷⁶Ge(n,γ) reactions
 - Prompt γ-ray spectrum in ⁷⁵Ge and ⁷⁷Ge
- Summary

Background in GERDA

Radiopurity of: Germanium detector (cosmogenic ⁶⁸Ge) Germanium detector (cosmogenic ⁶⁰Co) Germanium detector (bulk) Germanium detector (surface) Cabling Copper holder Electronics Cryogenic liquid Infrastructure

Sources: Natural activity of rock Muons and neutrons

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen GERDA Mee

Background in GERDA

Radiopurity of: Germanium detector (cosmogenic ⁶⁸Ge) Germanium detector (cosmogenic ⁶⁰Co) Germanium detector (bulk) Germanium detector (surface) Cabling Copper holder Electronics Cryogenic liquid Infrastructure

Sources: Natural activity of rock Muons and **neutrons** Fast neutrons produced by cosmic muons can propagate through the water tank and LAr to the Ge-diodes. There they can be captured by a ⁷⁴Ge or ⁷⁶Ge nucleus.

Neutron Capture by ⁷⁶Ge

Neutron Capture by ⁷⁶Ge

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Neutron Capture by ⁷⁶Ge

In GSTR-06-012 Luciano discussed this problem:

Production rate: 0.5 – 1 nuclei/kg/y (LAr)

Counts in ROI due to β -particles

⁷⁷Ge: 8 x 10⁻⁵ counts/keV/decay (can be reduced by factor of 3 by anti-coincidence).

^{77m}Ge: 2.1 x 10⁻⁴ counts/keV/decay (small reduction due to direct transition to ground state).

Rejection strategy for β -particles from ^{77m}Ge: $t_{1/2}$ (^{77m}Ge)=52.9s \rightarrow **dead time 4min** ($\epsilon_{dec} = 0.96$)

1. Trigger on muon veto (rate: 2.5 per min.).

not feasible

2. Trigger on muon veto & prompt gamma-rays (after neutron capture) in HPGe (9 events/day).

 $\begin{aligned} \epsilon &= \epsilon_{mv} \times \epsilon_{Ge} \times \epsilon_{dec} \\ \epsilon &= 0.95 \times 0.56 \times 0.96 = 0.51 \end{aligned}$

favoured

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Prompt transitions in ⁷⁷Ge

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

PGAA @ FRM II

(Prompt Gamma-ray Activation Analysis)

Beam

 $\sim 3 \times 10^9 n_{th}^{/}(cm^2 s^1)$ $<\lambda_n > = 6.7 \text{ Å (cold)}$ $<E_n > = 1.83 \text{ meV}$

Detectors

2 HPGe with Compton suppresion Li/Cd/Pb shielding

Thermal n-capture cross section

Thermal n-capture cross section

⁷⁶Ge target was activated together with a gold foil and after irradiation the γ -rays after β -decay were measured by HPGe detectors. The cross-section was calculated relative to ¹⁹⁸Au using known emission probabilities.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Results ${}^{76}Ge(n,\gamma)$

cross section [mbarn]						
σ(⁷⁷ Ge total)		σ(⁷⁷ Ge direct)		σ(^{77m} Ge)		
Seren (1947):	85 ±17					
Pomerance (1952):	350 ± 70					
Brooksbank (1955):	300 ± 60					
Metosian (1957):	76 ± 15			Metosian	(1957): 87 ± 15	
Lyon (1957):	43 ± 2	Lyon	(1957): 6 ± 5	Lyon	(1957): 137 ± 15	
				Wigmann	(1962): 120 ± 20	
				Mannhart	(1968): 86 ± 9	
New value (2009): 6	68.8 ± 3.4		46.9 ± 4.7		115 ± 16	
G. Meierhofer et al., EPJA 40, 61 (2009)						
				relativly la due to bra	arge uncertainties anching ratio	

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Emission probabilities

Depending on the transition used, the cross section varies by 15%.

The same effect was observed by J. Marganiec, PRC79, 065802 (2009).

Very likely that the emission probabilities in the literature are not correct.

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Neutron Capture by ⁷⁴Ge

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen GERDA Meeting

Results $^{74}Ge(n,\gamma)$

cross section [mbarn]					
σ(⁷⁵ Ge total)	σ(⁷⁵ Ge direct)	σ(^{75m} Ge)			
Seren (1947): 380 ±76					
Pomerance (1952): 600 ± 60					
	Metosian (1957): 180 ± 40	Metosian (1957): 40 ± 8			
Lyon (1960): 550 ± 55					
		Wigmann (1962): 200 ± 20			
		Mannhart (1968): 143 ± 16			
Koester (1987): 400 ± 200					
New value (2010): 497 ± 52	365 ± 51	130.5 ± 5.6			
G. Meierhofer et al., PRC 81, 027603 (2010)					
relativly large uncertainties due to emission probabilities					

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Prompt γ-spectra (preliminary)

⁷⁶Ge ⁷⁴Ge ⁷³Ge ⁷⁷Ge (decay) ⁷⁵Ge (decay) **Depleted:** ⁷⁴Ge ⁷³Ge ⁷²Ge

Background: F, H, N, Na, C,Cd, Al, Pb

Further spectra: Empty target (C_2F_4) Decay (enriched) Decay (depleted)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Example 5049 keV

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen GERDA Meeting 1

ROI @ 2039 keV

Depleted GeO₂ ⁷⁰Ge: 22.078% ⁷²Ge: 30.04% ⁷³Ge: 8.40 % ⁷⁴Ge: 38.90 % ⁷⁶Ge: 0.59 %

Enriched GeO₂ ⁷⁰Ge: 0.0 % ⁷²Ge: 0.03 % ⁷³Ge: 0.13 % ⁷⁴Ge: 12.1 % ⁷⁶Ge: 86.9 %

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen GERI

ROI @ 2039 keV

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Decay scheme in ⁷⁷Ge (preliminary)

In total 122 transitions assigned to ⁷⁶Ge, 75 of them placed in the decay scheme.

Some transitions known from other reactions:

-β-decay of ⁷⁷Ga - ⁷⁶Ge(¹³C,¹²C)⁷⁷Ge

Now 60% of the emitted energy known

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Decay scheme in ⁷⁵Ge (preliminary)

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen

Summary

Neutron capture on $^{76}\mbox{Ge}$ will produce background in GERDA (prompt cascade and delayed decay of $^{77}\mbox{Ge}$).

The prompt cascade is needed to veto the delayed decay of ⁷⁷Ge.

- Measurements
 - The cross sections of the ⁷⁶Ge(n,γ) and ⁷⁴Ge(n,γ) reactions were measured by the activation method.
 - The prompt gamma-ray spectrum in ⁷⁷Ge and ⁷⁵Ge were measured and the decay schemes reconstructed.
- Conclusions for GERDA
 - Cross sections: ^{77m}Ge slightly lower, ⁷⁷Ge significantly higher
 - There are peaks around 2039 keV
- Future measurements
 - Decay scheme of ⁷⁷Ge, determination of correct emission probabilities
 - Branching of the isomeric state in ⁷⁷Ge

Georg Meierhofer, Kepler Center for Astro and Particle Physics, University Tübingen