Radon emanation at cryogenic temperatures

KK KAISER + KRA

Radon and cold surfaces

Sebastian Lindemann – MPI-K Heidelberg

Outline

- Introduction
- Measurements
 - "Warm" (normal) emanation
 - "Cold" emanation into gas (cryostat neck)
 - "Cold" emanation into liquid (cryostat)
- Interpretation of data
- Conclusions for cryostat

Introduction

8 mBq \rightarrow 10⁻⁴ cts/(keV·kg·y) 55 mBq \rightarrow ~10⁻³ cts/(keV·kg·y) 55 mBq + shroud \rightarrow < 4 × 10⁻⁴ cts/(keV·kg·y)

Does the Rn emanation at cryogenic temperatures differ from the emanation at room temperature?

Measurements – "warm" vs. "cold" emanation

(Leak tested: < 10⁻⁶ mbar·l/sec)

Measurement – The samples

WTh welding rods (5pz) + Al foil (2.2 m² surface)

²²⁶Ra solution (16mBq) on small stainless steel plate

Al foil + 5 WTh rods in trap

LArTrap + WTh welding rods (100pz; 4% thorium)

Sebastian Lindemann - MPIK Heidelberg

Measurement – The results

²²² Rn emanation	gaseous carrier (He)		
	room temperature	LAr temperature	
Al foil (2.2 m ²)	< 0.12 mBq -		
Welding rods (3pz)	(0.13 ± 0.01) mBq -		
Al foil + welding rods (5pz)	(0.14 ± 0.01) mBq	-	
²²⁶ Ra (16mBq) sol. on stainless steel	(1.4 ± 0.2) mBq	< 0.014 mBq	
Tungsten welding rods (4%Th)	(1.5 ± 0.2) mBq	< 0.040 mBq	

> 40 times lower emanation rate!

Interpretation - Emanation scenarios

Diffusion caused emanation

Recoil caused emanation

Sebastian Lindemann - MPIK Heidelberg

Interpretation – Reduced activity

Sebastian Lindemann - MPIK Heidelberg

Interpretation – Reduced activity

freezing out + porous (rough) surface effect

Most Rn atoms never released to surroundings!

Interpretation – Reduced activity

- <u>Option 1</u>:
 - Diffusion length decreases

- ²²⁶Ra sol.: "new" surface properties ?
- WTh rods: Rn diffusion const. for metals should be too small to explain effects!
- <u>Option 2</u>:

Freezing out of Rn atoms

- on all surfaces ?
- predominately on rough surface of sample ?

-> NEXT: Immerge sample directly in LAr!

Emanation

Filling LArTrap with LAr

LAr storage tank @ MPIK

LArTrap immersed in LAr

Transferring LAr carrier:

Separating mobile from immobile Radon atoms

-> "GERDA scenario" measurable!

Sebastian Lindemann - MPIK Heidelberg

²²² Rn emanation	gaseous carrier (He)		liquid carrier (Ar)
	room temperature	LAr temperature	LAr temperature
Al foil (2.2 m ²)	< 0.12 mBq	-	-
Welding rods (3pz)	(0.13 ± 0.01) mBq	_	_
Al foil + welding rods (5pz)	(0.14 ± 0.01) mBq	_	_
²²⁶ Ra (16mBq) sol. on stainless steel	(1.4 ± 0.2) mBq	< 0.014 mBq	-
Tungsten welding rods (4%Th)	(1.5 ± 0.2) mBq	< 0.040 mBq	(1.2 ± 0.2) mBq
			. 1

still VERY preliminary!

Outlook – LAr as carrier Interpretation

- Recoil driven emanation
- Rn atoms do not freeze out but stay in liquid because:
 - Opt 1: Radon atoms collide too often with Ar

-> Rn atoms do not come close enough to surfaces to freeze out (as it is the case for a gaseous carrier)

– Opt 2: Ar atoms freeze on Rn -> Ar-Rn complex

-> Ar-Rn complex is dissolved in LAr and does not freeze out on surfaces

Conclusions for cryostat

- Rn emanation above LAr → Rn freezes out on cold surface → no problem!(?)
- Rn emanation within LAr → Rn dissolves in LAr → LAr activity as predicted by "warm" measurements