GERDA - Status of Calibration

Michał Tarka

University of Zurich Physics Institute

Collaboration Meeting - LNGS 29.9'09

• Summary - custom ²²⁸Th source

• ²²⁸Th neutron measurements at LNGS

- Calibration system
 - Integration of the absorber in the commissioning lock
 - Monte Carlo simulations
 - Analysis code

Summary custom ²²⁸Th source

 \checkmark Chemical & thermal treatment of $^{228}ThCl_4$ in 1M HCl solution at PSI

 \checkmark Wipe tests: γ measurements with GATOR

> Activity on the surface of encapsulation A < 0.5 mBq

Summary custom 228Th source

10⁴

 \checkmark Chain recovery after treatment verified after 2 months by γ measurements.

 \checkmark Activity losses during treatment determined with γ measurements and comparison with Monte Carlo.

²²⁸Th+Bckg - MC

2000

E [keV]

2500

nominal activity of ²²⁸ThCl₄: 20 kBq ²²⁸Th - 20kBq - data 10² cts/(kg keV s) 10^{0} 10⁻² MC estimation after treatment at PSI: (20.2 ± 0.4) kBq MC: best fit activity = 20.2 kBq 10⁻⁴ no measured activity loss during the treatment at PSI 1500 500 1000

Neutron measurements at LNGS

Custom ²²⁸Th source: n-flux measurement with ³He detector at LNGS

Detector efficiency:

(determined by Monte Carlo simulations) $\varepsilon_{tot} = \varepsilon_{geom} \cdot \varepsilon_{therm} \cdot \varepsilon_{capt} = 0.2 \%$ $\varepsilon_{geom} =$ geometrical eff. $\varepsilon_{therm} =$ n-thermalization eff. in PE $\varepsilon_{capt} =$ therm. n capturing eff. in ³He

- neutrons thermalized using 12.5 cm of PE
- 3 He(n,p) 3 H reaction: Q = 764 keV
- 28 days data taking
- Measured n-rate: $\mathbf{R} = (8.5 \pm 1.5) \cdot 10^{-4} \text{ n/s/kBq}$ • Calculated n-rate (SOURCES4mv): $\mathbf{R} \cong 5 \cdot 10^{-4} \text{ n/s/kBq}$

Calibration system: Absorber integration

Asymmetrical mounted source for better statistics?

→ string oscillations - amplitude, timescale?

Calibration system: MC simulations

Monte Carlo studies assuming 20 kBq ²²⁸Th sources in the commissioning lock configuration

- calibration run time
 Preliminary results:
- 2 sources: 4h + moving time
- 3 sources: 1.25 h + moving time
- optimal z-positions
- PSA study

Data taken with PZ0 electronics :➤ folding-in realistic resolutions in MC

Calibration code:

 goal: automated line identification, channel calibration, fit-routines, stability control

- Mounting custom ²²⁸Th source, 20 kBq
- Produce a second source at PSI (order for ²²⁸ThCl₄ solution placed on 22.9'09)
- Monte Carlo commissioning lock configuration
- Development of a calibration-analysis software
- Pulse shape studies / simulations

Thank You

NaAlSiO₂ ceramic saturated with ²²⁸Th

 $(\alpha$ -n) reactions result in

⇒ $h = 3.8 \cdot 10^{-2} \text{ n/s/kBq}$, <E> = 1.45 MeV

Monte Carlo simulations:

- ◆ 3.5 m LAr between source and detector array
- ◆ Total Ge mass: 250 kg
 - ⇒ Background: I · 10⁻⁵ cts/kg·y·keV·kBq)

Basic idea for the n-rate reduction:

 \Rightarrow replace the ceramic by materials with higher threshold energies for (α-n) reactions.

Interesting candidates:

```
Gold: E<sub>THR</sub> = 9.94 MeV
Tungsten: E<sub>THR</sub> = (9.4 - 11.9) MeV
<sup>90</sup>Zr: E<sub>THR</sub> = 7.95 MeV
```

Best candidate:

Gold:

- ⇒ no (α -n) reactions in contact with ²²⁸Th
- ⇒ easy to handle, Au foils available
- ⇒ chemically inert

Final procedure determined in collaboration with **PSI**

Road-map followed:

- ◆ (2.2'09) : Ordering 20kBq ²²⁸ThCl₄ in IM HCl solution (0.5 mlV-vial) at Isotopic Products.
- ♦ (30.3'09) : Processing the solution at PSI.
- ◆ (6.5'09) : Encapsulation + certification at Isotopic Products.
- ♦ (June/July '09) : Determining the limit on the n-flux in LNGS.

ThO₂ in goldfoil

¹⁶O: 99.76 %, E_{Thr} = 15.17 MeV
¹⁷O: 0.038 %, E_{Thr} = < 0.1 MeV
¹⁸O: 0.205 %, E_{Thr} = 0.851 MeV

⇒ $h = 5 \cdot 10^{-4} \text{ n/s/kBq}$, <E> = 2.5 MeV

Monte Carlo simulations:

- ◆ 3.5 m LAr between source and detector array
- Total Ge mass: 250 kg

 \Rightarrow Background: 8.6 · 10⁻⁸ cts / (kg·y·keV·kBq), (Reduction by ~116)

Relative peak height ratio in equilibrium : ²¹²Pb/²²⁴Ra = 10.6

- Source position: 6 cm above endcap
- ♦ MC: 2.4 · 10⁸ decays started
- Data: taken for 21 h

nominal activity of $^{228}ThCl_4$: 20 kBq MC estimation after trearment at PSI: 20.2 \pm 0.4kBq

 \rightarrow no measured activity loss during the treatment at PSI

SEP		6.00E+07	9.00E+07	1.20E+08	1.50E+08	5.00E+07	5.00E+07
Α	cts	368	534	710	898	442	218
	P:B	2.8	2.7	2.8	2.7	3.1	3.3
В	cts	293	441	611	746	242	462
	P:B	2.8	2.4	2.6	2.6	2.6	3.7
С	cts	301	454	580	733	347	104
	P:B	2.8	2.6	2.5	2.6	2.8	2.7
D	cts	333	510	692	863	69	95
	P:B	2.8	2.8	2.8	2.8	1.9	3.3
		3 Sources				2 Sources	1 Source Old
		1.25 h + moving time				4 h + mt	15 h + mt