

Behavior of 222Rn and its daughters in N₂ and LN₂

Nikodem Frodyma, Marcin Wójcik, Krzysztof Pelczar

GERDA Collaboration Meeting LNGS, 28–30 September 2009

Outline

- Radon daughters in LN₂
 - Long term behaviour influence of impurities
 - Simple model of the phenomenon
 - Test of the model
- Radon in gaseous N₂
 - Rn freezing out on the walls above the LN_{2} surface
 - Rn daughters "diffusion" into the liquid
- Summary

- GERDA
- Each created Rn daughter is positively charged right after the decay
- Electric field attracts the ions

 Positive ion remains charged due to differences in ionizing potentials of the surrounding atoms and the ion

	1 st [eV]	2 nd [eV]
Ar	15.76	27.63
N	14.53	29.60
Rn	10.75	
Ро	8.41	
Pb	7.42	15.03
Bi	7.29	16.69

5 of 19

90320

6 of 19

Rn daughters in LN₂ – simple model of the phenomenon

- Rn is inert and uniformly distributed in the volume
- Each decay positively charges the atom
- Ions lifetime related to impurities concentration
- Impurities concentration drops down in time
- Ions move in electric field E(r) with constant mobility μ_{LN2}: dr = μ_{LN2}E(r)dt

Rn daughters in LN₂ – simple model of the phenomenon

Rn daughters in LN₂ – simple model of the phenomenon

- Impurities are sticking to the walls of the dewar so the lifetime of ions grows
- Activity of Rn daughters collected on the plates grows as more ions approaches the plate (results are Rn-decay corrected)

Rn daughters in LN_2 – test of the model (dissolving of air in the LN_2)

- Dissolving of air for 30 min to 2 hrs before the measurement (stream above the surface of LN₂)
- Measuring of collected Rn – daughters activity in LN₂

Rn daughters in LN_2 – test of the model (dissolving of air in the LN_2)

High voltage influence on counts of ²¹⁴Po $R_{1} = \frac{N(LN_{2})}{N(gasN_{2})} = 13.9 \pm 5.4$ $R_{2} = \frac{N(HV: -2kV)}{N(HV: +2kV)} = 3.07 \pm 0.10$ LN2

$$R_{3} = \frac{N(HV:+2kV)}{N(LN_{2})} = 11,8 \pm 1,2$$
$$R_{4} = \frac{N(HV:-2kV)}{N(LN_{2})} = 36,2 \pm 3,7$$

²¹⁴ Po ²¹⁸ Po	N ₂	LN ₂
No-HV	22 ± 5 9 ± 3	0 0
+ 2000 V	23 ± 5 5 ± 3	13 ± 4 0
- 2000 V	2717 ± 52 536 ± 23	44 ± 7 1 ± 1

- Rn dissolved in the gas quickly froze out on the walls
- Boil-off cleans the volume of ~15 I above the LN₂ (60 I/h of gas) fast

- Electric field attracts Rn daughters from the walls
 - The same results for no field and positive field (decays of some Rn atoms close to the plate etc., no carriage particles for positive HV counts)

Radon in gaseous N₂ – Rn daughters diffusion into the liquid

 Example of the detailed data with and without outer ion "attractor" (Rn daughters counts on the SSP immersed in LN₂)

²¹⁴ Po	with	without
²¹⁸ Po	attractor	attractor
- 2000 V	44 ± 7 1 ± 1	92 ± 10 1 ± 1

Summary

- Impurities influence the Rn-daughters behaviour in LN₂
- Inlet of Rn from the lock system
 - Freezing out of Rn on the surfaces Good
 - Low "diffusion" of Rn-daughters **Good**
 - E field attracts daughters (3 h of lifetime), but checked for low immersion depth (electric field relatively high) – Bad