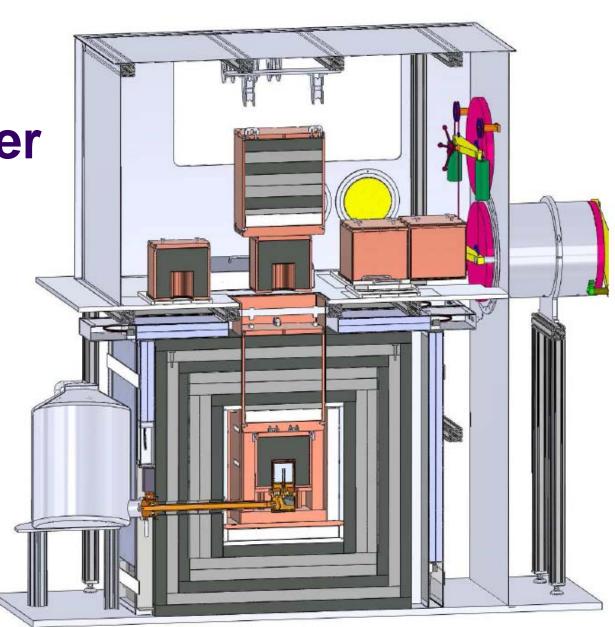
TG11 overview Material screening

Hardy Simgen

Max-Planck-Institut für Kernphysik / Heidelberg

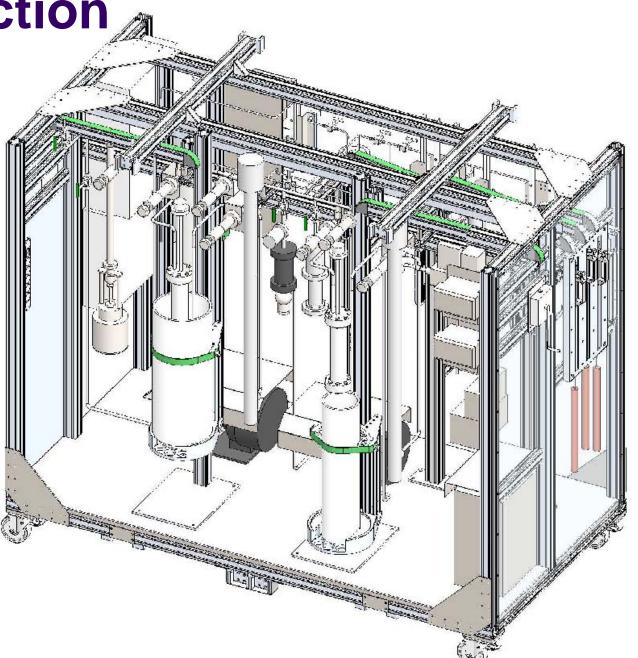
Outline

- New hardware development
- Gamma-ray screening results
 - Circuit components
 - Others
- ICP-MS measurements
 - PEN (Teonex) and Kapton
- ²²²Rn emanation measurements


Rn monitor parameters

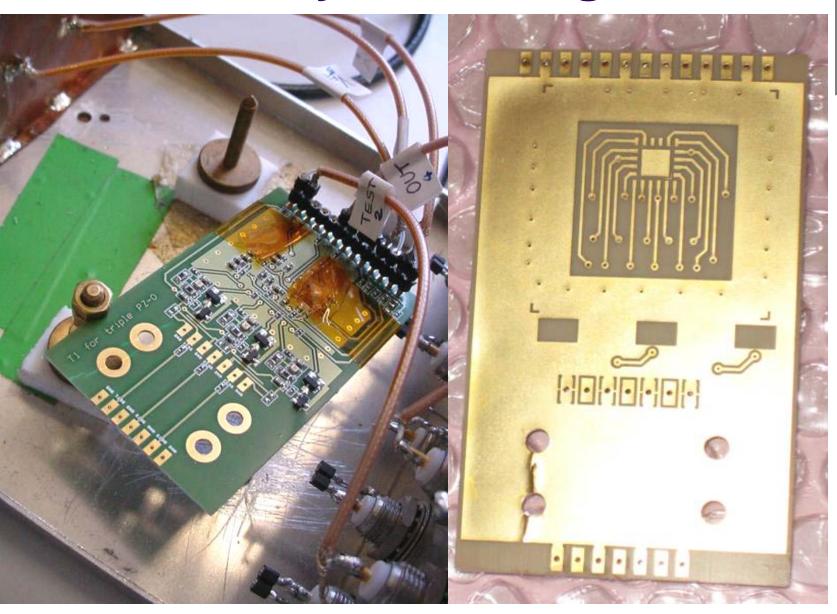
- Measurement of
 - Air: 40 kV: 76% collection efficiency
 - Ar: 8 kV: 95% collection efficiency
- ²²²Rn emanation rate:
 - ~0.3 mBq (i.e. 5 μ Bq/m³ @ 6 l/min flow-rate
- Background: 0.2 2 cpd (double amplifier technique, PSA)
- Sensitivity down to ~100 μBq/m³
- Minor things missing (Network, connection tube)

GIOVE: A new Gespectrometer @ MPIK


 Reduction of neutron background at shallow depth (15 m w.e.)

> → Talk by Marc Weber

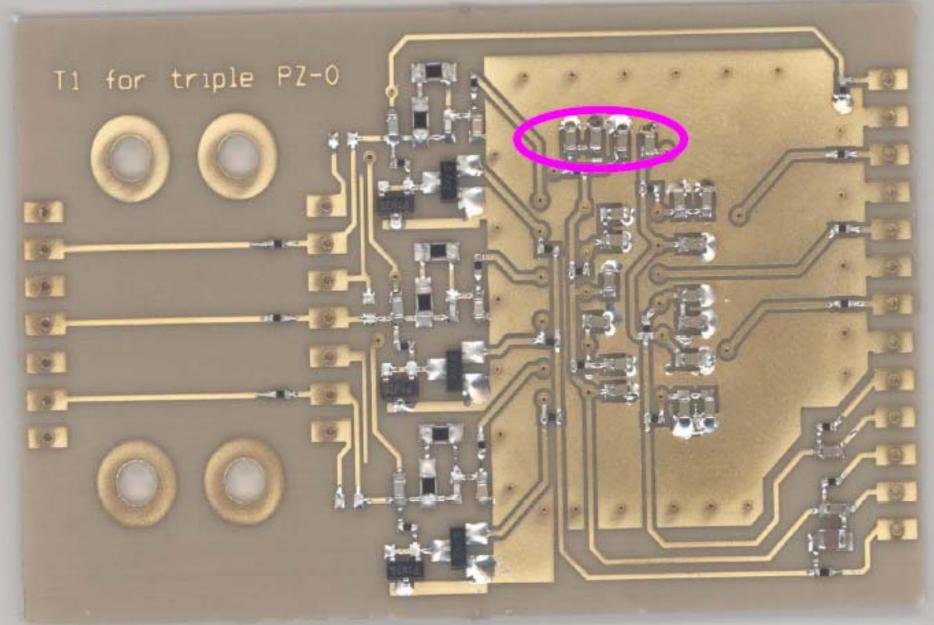
Construction of new MoREx



TG11 activities I won't talk about...

- Cryostat emanation tests: (54.7 ± 3.5) mBq
- Behaviour of Rn and Rn daughters in a cryogenic environment:
 - → Talk by Sebastian Lindemann
 - → Talk by Krzysztof Pelczar
- Neutron activation analysis of various materials
 - → Talk by Alexander Domula

Gamma-ray screening: PZ0


Matthias' slide from Padova:

Radionuclide concentrations per PCB

item	mass	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	⁴⁰ K
PCB	6.5 g	6.3 ± 0.5	0.21 ± 0.13	0.19 ± 0.08	2.2 ± 0.7
Cuflon	4.4 g	< 3.5 E-3	< 12 E-3	< 7.9 E-3	0.19 ± 0.06
solder	~2 g	< 9.6 E-3	< 9.2 E-3	< 13 E-3	< 0.10
FET	0.05 g	31 ± 8 E-3	< 26 E-3	33 ± 8 E-3	< 0.12
Big res.	0.03 g	< 22 E-3	< 20 E-3	< 20 E-3	< 0.21

unit in mBq

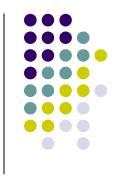
20 x X5R

γ-ray screening results of PZ0 and capacitors [mBq/PCB]

Samp	²²⁶ Ra	²²⁸ Th	²²⁸ Ra	⁴⁰ K	
PCB	1 piece / 6.5 g	6.3 ± 0.5	0.2 ± 0.1	0.2 ± 0.1	2.2 ± 0.7
Capacitors NP0	9 pc./PCB	0.6 ± 0.2	<0.4	0.7 ± 0.3	<3.2
Capacitors X7R	1 pc./PCB	1.0 ± 0.1	0.3 ± 0.1	<0.4	<0.7
Capacitors X5R	20 pc./PCB	3.8 ± 0.3	0.8 ± 0.2	<1.0	<2.9
Ta capacitors Farnell 165-8386 10 μF, 4 V	50 pieces (0.27 g)	<3 μBq/pc.	8 ± 2 μBq/pc.	<10 μBq/pc.	70 ± 30 μBq/pc.
Ta capacitors Farnell 165-8387 4.7 μF, 10 V	50 pieces (0.25 g)	<2 μBq/pc.	2 ± 1 μBq/pc.	<5 μBq/pc.	80 ± 20 μBq/pc.

see GERDA Wiki http://www.mpi-hd.mpg.de/gerdawiki/index.php/Circuit

Gamma-ray screening results Activities in [mBq/kg]


Sample	²²⁶ Ra	²²⁸ Th	²²⁸ Ra	⁴⁰ K
10% borated PE	53 ± 2	9.3 ± 1.7	5.3 ± 2.3	34 ± 8
5% borated PE (Profilan)	130 ± 4	12 ± 2	14 ± 2	23 ± 7
unborated PE (Profilan)	<4	<4	<7	<17
Boron oxide	570 ± 20	50 ± 10	70 ± 10	70 ± 30
Viton O-rings for LArGe (fraction measured at IRMM)	440 ± 30	80 ± 15	67 ± 15	2700 ± 280
Viton O-rings for LArGe (fraction measured at MPIK)	310 ± 50	<190	<230	910 ± 360

ICP-MS measurements of PEN (Teonex) and Kapton

- Kapton is dirty in ²²⁶Ra: ~9 mBq/kg
- Flat cable production with PEN proven (metal layer deposition possible)
- PEN is promising material, but contradicting results:
 - 1st sample : U <16 ppt (only ICP-MS)
 - 2nd sample: 1000 times worse (γ and ICP-MS)
 - 3rd sample: ²²⁶Ra: <2 mBq/kg (γ)
- Cross check of 3rd sample with ICP-MS

PEN (Teonex) and Kapton

- Two detailed reports from Stefano Nisi:
- Linked on GERDA Wiki:

http://www.mpi-hd.mpg.de/gerdawiki/index.php/ TEONEX_and_Kapton

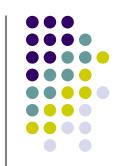
Summary:

Element /	PEN ((Teonex)	Kapton	
Isotope	c [ppt]	A [mBq/kg]	c [ppt]	A [mBq/kg]
U / ²²⁶ Ra	30 - 80	0.4 -1.0	800	10
Th / ²²⁸ Th	20 - 120	0.1 - 0.5	120	0.5
K / ⁴⁰ K	3·10 ⁵	10	<1.5·10 ⁶	<50

Emanation measurements: Viton o-rings for LArGe

- 20 Viton o-rings (63.3 g, 3 mm x 75 mm)
- Results: $(1.04 \pm 0.10) \text{ mBq}$ $(28 \pm 2) \text{ mBq/m}^2$

γ-ray screening:


²²⁶Ra: (440±30) mBq/kg (IRMM)

²²⁶Ra: (310±50) mBq/kg (MPIK)

⇒ 4 - 5 % of the ²²²Rn is emanated

²²²Rn emanation results: Saturation activity in [mBq]

Sample	Description	Result
Cu foil for shroud	similar amount as used for shroud	<71 μBq
Rn monitor	Cross-check with proportional counters	~0.3 mBq
Polyurethane o-rings (93° Sh)	26 pieces, thickness: 2 mm and 3 mm	$(1.3 \pm 0.1) \text{ mBq}$ $(40 \pm 3) \text{ mBq/m}^2$
Polyurethane o-rings (90° Sh)	15 pieces, thickness: 4 mm	<66 μBq <1 mBq/m²
10 % borated PE	4pc. (20 x 20 x 5) cm ³	$(0.20 \pm 0.05) \text{ mBq}$ $(0.4 \pm 0.1) \text{ mBq/m}^2$

Emanation measurements: LEDs

- 6 pieces with cables
- Total result: (0.34 ± 0.09) mBq
- Specific result: $(60 \pm 15) \mu Bq/pc$.
- Measurement is still ongoing

