²²²Rn emanation measurements of the GERDA cryostat

Hardy Simgen / Grzegorz Zuzel

Max-Planck-Institut für Kernphysik / Heidelberg

The procedure

- Remove air-borne ²²²Rn (Evacuating cryostat twice to ~1 mbar)
- 2. Fill with ²²²Rn-free N_2 (purified with MoREx)
- 3. Wait for \geq 1 week to let grow-in emanating ²²²Rn
- Mix N₂ in order to guarantee homogeneuos ²²²Rn distribution in the N₂ (Adding ²²²Rn-free N₂ in a turbulent way right before the extraction)
- Extract small fraction of N₂ from cryostat and determine its ²²²Rn concentration
- 6. Scale to entire cryostat to find total emanation rate

Previous results					
No.	Date	Description	Single results [mBq]	Average [mBq]	
1	Nov 07	After construction and cleaning, no N ₂ mixing	$\begin{array}{l} {\bf 16.9 \pm 1.6_{stat} \pm 3.0_{sys}} \\ {\bf 29.8 \pm 2.4_{stat} \pm 5.8_{sys}} \end{array}$	23.3 ± 3.6	
2	Mar 08	After additional cleaning	$13.6 \pm 0.7_{stat} \pm 2.4_{sys}$ $13.7 \pm 0.7_{stat} \pm 2.7_{sys}$	13.7 ± 1.9	
3	Jun 08	After Cu mounting	$33.0 \pm 2.8_{stat} \pm 7.0_{sys}$ $35.7 \pm 2.9_{stat} \pm 8.8_{sys}$	34.4 ± 6.0	
4	Nov 08	After wiping of Cu / steel surfaces.	$\begin{array}{c} 33.2 \pm 3.5_{\rm stat} \pm 1.9_{\rm sys} \\ 31.3 \pm 4.6_{\rm stat} \pm 3.4_{\rm sys} \\ 27.3 \pm 2.4_{\rm stat} \pm 0.7_{\rm sys} \end{array}$	30.6 ± 2.4	

Reminder: Homogeneity test

Before mixing:

- $c_{bot} = (0.28 \pm 0.03) \text{ mBq/m}^3 \text{ (STP)}$
- $c_{top} = (0.42 \pm 0.05) \text{ mBq/m}^3 \text{ (STP)}$

After mixing:

- $c_{bot} = (0.27 \pm 0.05) \text{ mBq/m}^3 (\text{STP})$
- $c_{top} = (0.23 \pm 0.03) \text{ mBq/m}^3 \text{ (STP)}$
- If system is untouched ²²²Rn is NOT homogeneously distributed
- Mixing technique by N₂-adding is working!

Latest cryostat ²²²Rn tests

1st + 2nd test (with mixing):

- $c = (0.77 \pm 0.06) \text{ mBq/m}^3 (\text{STP})$
- $c = (0.98 \pm 0.08) \text{ mBq/m}^3 (\text{STP})$

3rd test (without mixing):

• $c = (1.50 \pm 0.10) \text{ mBq/m}^3 \text{ (STP)}$

4th + 5th test (with mixing):

- $c = (0.86 \pm 0.07) \text{ mBq/m}^3 (\text{STP})$
- $c = (0.76 \pm 0.06) \text{ mBq/m}^3 (\text{STP})$
- Stronger ²²²Rn source in the upper part than in the lower part of the cryostat.

Summary of latest cryostat ²²²Rn emanation tests

Date	Sample size [m ³ (STP)]	Mixed before sampling ?	Fraction of satura- tion	Measured Rn concentration in saturation [mBq/m ³]	Total cryostat emanation [mBq]
26.8.09	3.1	yes	73 %	$0.77\pm0.05_{stat}\pm0.03_{sys}$	$\textbf{49.9} \pm \textbf{3.3}_{stat} \pm \textbf{2.1}_{sys}$
26.8.09	2.7	yes	73 %	$0.98\pm0.06_{stat}\pm0.05_{sys}$	$\textbf{63.8} \pm \textbf{4.1}_{stat} \pm \textbf{3.1}_{sys}$
4.9.09	3.9	no	84 %	$1.50\pm0.09_{stat}\pm0.05_{sys}$	(97.2 \pm 5.5 _{stat} \pm 3.3 _{sys})
8.9.09	2.7	yes	71 %	$0.86\pm0.06_{stat}\pm0.04_{sys}$	$\textbf{56.2} \pm \textbf{3.7}_{stat} \pm \textbf{2.7}_{sys}$
8.9.09	2.9	yes	71 %	$0.76\pm0.05_{stat}\pm0.03_{sys}$	$49.1\pm3.3_{stat}\pm2.2_{sys}$

Average (without non-mixed sample): $(54.7 \pm 3.5) \text{ mBq}$

Assumes homogeneous ²²²Rn distribution

Conclusions

- Sampling procedure well understood
- Emanation rate is now $(54.7 \pm 3.5) \text{ mBq}$
 - about 25 mBq more than before
- More ²²²Rn sources in upper part than in lower part
 - Might be favourable due to the planned temperature gradient (No convection).
- All data obtained at room temperature!
 → talk of Sebastian Lindemann tomorrow
- Next: Sampling of LAr after filling!?

Extra sildes

Cryostat emanation overview

No.	Date	Description	Single results [mBq]	Average [mBq]
1	Nov 07	After construction and cleaning, no N ₂ mixing	$\begin{array}{l} \textbf{16.9} \pm \textbf{1.6}_{stat} \pm \textbf{3.0}_{sys} \\ \textbf{29.8} \pm \textbf{2.4}_{stat} \pm \textbf{5.8}_{sys} \end{array}$	23.3 ± 3.6
2	Mar 08	After additional cleaning	$\begin{array}{c} 13.6 \pm 0.7_{stat} \pm 2.4_{sys} \\ 13.7 \pm 0.7_{stat} \pm 2.7_{sys} \end{array}$	13.7 ± 1.9
3	Jun 08	After Cu mounting	$\begin{array}{l} \textbf{33.0} \pm \textbf{2.8}_{stat} \pm \textbf{7.0}_{sys} \\ \textbf{35.7} \pm \textbf{2.9}_{stat} \pm \textbf{8.8}_{sys} \end{array}$	34.4 ± 6.0
4	Nov 08	After wiping of Cu / steel surfaces.	$\begin{array}{c} 33.2 \pm 3.5_{stat} \pm 1.9_{sys} \\ 31.3 \pm 4.6_{stat} \pm 3.4_{sys} \\ 27.3 \pm 2.4_{stat} \pm 0.7_{sys} \end{array}$	30.6 ± 2.4
5	Sep 09	After mounting of shroud, manifold, compensator, and cryogenic tubing	$\begin{array}{l} 49.9 \pm 3.3_{stat} \pm 2.1_{sys} \\ 63.8 \pm 4.1_{stat} \pm 3.1_{sys} \\ 56.2 \pm 3.7_{stat} \pm 2.7_{sys} \\ 49.1 \pm 3.3_{stat} \pm 2.2_{sys} \end{array}$	54.7 ± 3.5