Status of Phase II Detector production TG02

L. Bezrukov, A. Caldwell, <u>J. Janicskó</u>, D. Lenz, J. Liu, X. Liu, B. Majorovits, V. Kornoukhov Consultant: I. Abt

LNGS Nov. 2008 JJ

- April 2006: 37.5 kg Enriched Germanium with 87% ^{76}Ge first delivered to Munich, now stored underground in the HADES UGL (Geel).
- April 2006: 50 kg of depleted GeO₂ also delivered to MPI is being used for purification and crystal pulling tests
- In 2007 new purification test started at PPM Pure Metals (Langelsheim, DE)
- June 2007: first test with depleted Ge completed
- October 2007: start of crystal pulling R&D contract with IKZ
- December 2007: a second purification test completed

Purification tests at PPM

- The first purification test at PPM Pure Metals GmbH (Langelsheim) was performed in May-June 2007.
- Second test August-December 2007
- Both tests were completed. The results are summarized in a report: GSTR-08-001
- After 3 steps of ZR total yield of 6N material 90%, no isotopic dilution effect, no dangerous contamination levels
- Solution was found for underground storage during purification
- Remaining 27kg of depleted Ge zone-refined at PPM (almost done)
- We are negotiating the reduction and zone-refinement of the enriched material

Last meeting at IKZ 29.10.2008

- Since last collab. meeting 6 new crystals produced:
 - CZ4: from PPM material
 - CZ6: from 6N standard Ge
 - CZ7: The cleaner part of two previous crystals recycled
 - FZ-V3105: Float-zone crystal from PPM material
 - Ge-409: grown with a different Cz. puller
 - CZ8: from PPM material and using Ultra High Purity crucible
- They were all measured with Hall-effect and PTIS at IKZ

Crystal characterization

- CZ4 (PPM material) was cut every 2cm to produce a longitudinal impurity profile
- 2-3 samples cut from all other crystals
- Analysis completed:
 - All Cz. crystals have an impurity level typically of 10^{13} /cm³
 - Float zone crystal seed end has 10^{11} impurity/cm³
- Samples from CZ4 analyzed in Dresden with Photo-Luminescence spectroscopy
- Samples are prepared for further measurements at IKZ and Dresden

Presented by: N. Abrosimov at IKZ, 29.10.2008

PPM – Material (3 experiments)

Crystal - CZ4 (Ge-HP-4)

Crucible – qsil PN Atmosphere – $Ar+2\%H_2$

Conductivity and Hall effect results:

	Resistvity (Ωcm)		Electron conc. (10 ¹³ cm ⁻³)		Mobility (cm²/Vs)	
Temperature	297 K	77 K	297 K	77 K	297 K	77 K
CZ4_1-2	46.9	11.8	5.20	1.44	2561	36600
CZ4_2-2	51.6	11.5	4.14	1.50	2921	36090
CZ4_3-2	54.3	9.7	3.55	1.78	3238	36190
CZ4_5-2	44.2	7.8	4.60	2.22	3066	36120
CZ4_6-2	42.7	6.9	4.60	2.58	3182	35100
CZ4_8-2	30.2	4.3	6.36	4.11	3246	34970
CZ4_9-2	25.6	3.2	6.89	5.57	3539	34620
CZ4_11-2	13.4	1.6	12.3	12.24	3772	32170
CZ4_12-2	5.8	-	45.3	-	2366	-

LNGS Nov. 2008 JJ

Crystal - CZ4 (Ge-HP-4), PTIS

Photothermal ionization spectroscopy

Results

The main donor impurities in this crystal are phosphorous and arsenic with a concentration ratio $[P]/[As] \approx 1$ in sample 4-2 that seemingly changes to $[P]/[As] \approx 2$ in sample 10-2. Additionally, there may be traces of lithium (isolated lithium donor and lithium-oxygen complex).

Compensating acceptors are aluminum and, to a much lesser extent, boron. The net donor concentration $N_D - N_A$ (= [P] + [As] + [Li] + [Li-O] - [AI] - [B]) increases from about 1.4×10^{13} cm⁻³ near the crystal's seed to 1.2×10^{14} cm⁻³ near the tail (sample 11-2).

• low concentration $N_D - N_A = 1 \times 10^{11} \text{ cm}^{-3}$ near the seed

LNGS Nov. 2008 JJ

• no reliable Hall measurement at the crystal tail end up to now

PPM – Material (3 experiments)

Crystal – CZ8 (Ge-HP-8)

Crucible – suprasil Atmosphere – Ar

LNGS Nov. 2008 JJ

1 Scheibe d=3.5mm

1 Scheibe d=3.5mm

Ohne Bearbeitung

75 mm

1 Scheibe d=1mm

Ohne Bearbeitung

Ohne Bearbeitung

1 Scheibe d=1mm

Ohne Bearbeitung

<100>

- main impurities: [P] \ge [As]; [AI] > [B]) N_D - N_A = 8×10¹² cm⁻³ near the seed
- $N_D N_A = 3 \times 10^{13} \text{ cm}^{-3}$ near axial center
- no results near the tail due to electrical inhomogeneity

Scheibe d=3.5mm

Ohne Bearbeitung

1 Scheibe d=1mm

Ohne Bearbeitung

Presented by: M. Allardt, TU Dresden

Photoluminescence

PL vs. PTIS

TU Dresden, 04/11/08

Sample Ge#4-7/3

 \rightarrow Phosphorous exciton much stronger than arsenic exciton (ratio 10:1)

→No bound excitons visible → low impurity concentrations → very pure material

TU Dresden, 04/11/08

- Many crystals pulled and analyzed
- The source of impurities identified: is the Czochralski puller itself
- IKZ will upgrade the Cz. puller. First results in 4-6 weeks
- New analytical method from TU Dresden
- More detailed analysis of the existing crystals being done
- We are planing to make a small detector from the float-zone crystal
- The goal of having detector grade crystals in early 2009 is unlikely but still within reach