

Preparation, testing and assembling of the inner LArGe infrastructure

A. Gangapshev, <u>M. Heisel</u>, P. Peiffer, S. Schönert, A. Smolnikov,

with the support of T. Apfel, C. Bauer, V.Mallinger, M. Reißfelder, H. Strecker

The LArGe Setup

Lock: Can house up to 3 Phase 1 strings (9 detectors)

PMTs: 9 x 8" ETL 9357

VM2000 & wavelength shifter

Cryostat: Inner diameter: 90 cm, Volume: 1000 liter

Shield:	Cu	15 cm	
	Pb	10 cm	
	Steel	23 cm	
	PE	20 cm	
`			

Outline

coating of VM2000 reflector foil

PMT voltage devider & pulse shape tests

Light yield & PMT performance in LAr

PMT mounting into LArGe

 α -source manipulator

11/11/08

VM2000 coating with wavelength shifter

Why wavelength shifting?

the coating challenge ...

thickness of TPB-layer:

for 10 sq.meters of VM2000 !!!???

11/11/08

VM2000 coating with wavelength shifter

 \rightarrow VM2000 pieces are ready for mounting.

PMT voltage devider & pulse shape tests

The voltage devider for LArGe

Designed by JINR and MPIK:

- ➢ based on thin (0.5 mm) CuFlon (PTFE) PCB
- negative HV on cathode (for pulse shape quality)
- readout for anode and last dynode (D12)
- ▶ progressive type → dynamic range: 2mV 4V

PMT pulse shapes

PMT crosstalk test

oscillator signal ~ 4V

no crosstalk!

Tek 📃

PMT/PCB sparking tests in argon gas

- sparking test in argon gas atmosphere:
 - \rightarrow sparking occurs!
 - \rightarrow breakdown of HV
 - \rightarrow sparking is irregular in time and HV

Test of PMT #1142 in Mini-LArGe

11/11/08

Mini-LArGe @MPIK Schematic system describtion

11/11/08

Optimize PMT coating with wavelength shifter

goal: try to apply 1-4 μm thick layer of TPB/PST to (sandblasted) PMT glass surface

test painting of flat glass samples:

attempt	concentration of TPB/PST	layers of paint	applied solution	thickness
1st	11 g/l	2	~ 2.1 ml	~ 1.3 µm
2nd	11 g/l	4	~ 3 ml	~ 1.8 µm
3rd	33 g/l	1	~ 0.5-1 ml	~ 0.8-1.8 μm
4th	33 g/l	4	~ 3 ml	~ 5.5 µm

 \rightarrow test of WLS on glass samples in LN for mechanical stability

- test painting of PMT
- <u>now:</u> test of light yield in Mini-LArGe

Improvement of light yield

Signal-to-noise-ratio & energy resolution

PMT holder system in LArGe

9 PMTs without cabling sitting in the lower Teflon plate

the PMTs are lifted upwards into the holes in the upper copper plate

PMT holder system in LArGe

mockup of holder design with flexible Teflon brackets

Alpha source manipulator for position calibration in MiniLArGe

 \rightarrow for more details see TG10 status report, Luciano Pandola, tomorrow

10 cm

Alpha source manipulator for position calibration in LArGe

