COSMOGENIC RADIONUCLIDES in stainless steel and copper

Matthias Laubenstein

Laboratori Nationali del Gran Sasso, LNGS, Assergi, Italy

Gerd Heusser

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

• cosmic ray activation analysis at LNGS surface and irradiation ages

Interpretation of deviation from secular equilibrium in U/Th chain

• comparison of cosmogenic production rates in Cu with Monte Carlo simulation

see also Maneschg et al., NIM A 593 (2008), 448-453

GERDA

GERmanium Detector Array for the search of neutrinoless double beta decay of ⁷⁶Ge

Laboratori Nationali del GranSasso

GeMPI

(3800 mw.e. - 10⁶ muon flux suppression)

GERDA under construction

G. H. ----- ICRM-08, Braunschweig, 25.9.08.

Steel 457.1	activity [mBq/kg]								
sample		С	osmogenic	radionuclid	e				
_	⁷ Be	⁵⁴ Mn	⁵⁸ Co	⁵⁶ Co	⁴⁶ Sc	⁴⁸ V			
$\Gamma_{1/2} \rightarrow$	53.3 d	312.2 d	70.9 d	77.3 d	83.8 d	16.0 d			
Production \rightarrow	spallation	⁵⁶ Fe(n,p2n)	⁶⁰ Ni(n,p2n)	⁵⁸ Ni(n,p2n)	⁴⁸ Ti(n,p2n)	⁵⁰ Cr(n,p2n)			
channels		(µ⁻,v2n)	(µ⁻,v2n)	(µ⁻,v2n)	(µ⁻,v2n)	(µ⁻,v2n)			
			⁵⁸ Ni(n,p)		spallation	spallation			
					on Fe	on Fe			
G 1	≤ 3.9	1.3±0.4	0.67±0.34	≤ 0.32	≤ 0.35	0.30±0.11	innediction time		
							irradiation time		
G2	≤ 3 .0	1.5±0.1	0.99±0.12	0.17±0.06	0.24 <u>±</u> 0.06	0.36±0.07	← ar set developerground than		
							exposed for 314 dat INGS		
G3	≤ 5.7	0.92±0.24	0.56±0.23	≤ 0.62	≤ 0.54	0.27±0.11			
							Surface ($\approx 90/g/cm^2$)		
G4	9.6±2.9	2.0±0.3	0.71±0.26	≤ 0.71	≤ 0.67	0.31±0.13			
	40.47	17.00			0.47.044		r≈ 600 a		
<i>G</i> 5	4.8±1./	1.7±0.2	0.69 <u>±</u> 0.16	0.28±0.10	0.4/±0.14	0.22±0.09			
• •		1100	0.50.0.00		. 0. 04	0.40.040	all others are		
<i>G</i> 6	(13.6±2.5)	1.4 <u>+</u> 0.2	0.59±0.20	≤ 0.42	≤ 0.31	0.40 <u>±</u> 0.12	→ 34.6m 53 metaslined at Heidelberg 63 days earlier		
~-	< E 0	14.03	0 54.0 27	< 0.(0(1:02(0.20.0.12			
GI	≤ 5.9	1.0±0.3	0.54 <u>±</u> 0.27	≤ 0.6	0.01±0.20	0.39±0.13	sobernation oduced in cito,		
0.0 <i>i</i>							but contamination from		
P.Rate sea level	4.5±0.7	2.7 ± 0.3	0.6±0.09	0.24±0.04	<i>0.22±0.0</i> 4	0.4±0.04			
[(10° sec) - kg ·]							tiltrationtaust (up to 40		
	⁵¹ Cr: 2.0+	0.7 ² 52 Mn	g (Heusser 0.35 ± 0.2	2 994 %Ni: (0.17 ± 0.05	[mBa/ka]	kBa/ka Wershofen PTR)		
	2. e_					L'''- T'''''''''''''''''''''''''''''''''	rby ry, weisholen FTB)		
°°Co betore: 11.1±0.5 atter: 11.5±0.6 [Bg/Kg]									

G. H. ----- GERDA collab. meeting 11. Nov. 08

Attempt to date steel production by disequilibrium in the Th-chain

sample	primordial radionuclides [mBq/kg] and ratios						
	^{234m} Pa	²²⁶ Ra	^{234m} Pa/ ²²⁶ Ra	²²⁸ Th	²²⁸ Ra	²²⁸ Th/ ²²⁸ Ra	
old ship steel	5.7±1.4	0.15 <u>+</u> 0.02	38±11	0.46±0.07	0.47±0.05	0.98±0.18	
<i>G</i> 5	54±16	1.0 <u>+</u> 0.6	54±36	1.5±0.2	1.0±0.5	1.5±0.77	
G7	≤ 56	3.9±1.6	≤ 10-24	5.2±0.5	1.9±1.0	2.7±1.5	

(5)

according to experts most likely the disequilibrium is introduced through additives in the iron-steel conversion.

Since electric furnace melting uses a large fraction of scrap, the mean age will be higher

Ra removal seems not be connected with steel production

sea level exposure age via ⁵⁴Mn

Cosmogenic activation of Cu during 270 days at LNGS surface (≈ 930 g/cm2)

radionuclide	halflife	(saturo	ation) activity [ctivity [µBq/kg]		
cosmogenic		exposed	estimated from Cu used in HDM	estimated		
⁵⁶ Co	⁵⁶ Co 77.31 d			⁵⁵⁷ X2		
⁵⁷ Co	271.83 d	1800 ± 400	2100	2147 🗸		
⁵⁸ Co	70.86 d	1650 ± 90	3600	3878 X2		
⁶⁰ Co	5.27 у	2100 ± 190	2100	2367 🗸		
⁵⁴ Mn	312.15 d	215 ± 21	700	791 X3		
⁵⁹ Fe	44.5 d	455 ± 120		157 :4		
⁴⁶ Sc	83.79 d	53 ± 18		93 🗸		
⁴⁸ V	15.97 d	110 ± 40				
primordial				,		
²²⁶ Ra (U)	1600 y	< 35	< 16			
²²⁸ Th (Th)	1.91 y	< 20	< 12			
40K	1.277×10 ⁹ y	< 120	< 110			

Monte Carlo simulation of hadronic interaction Cebrian S., 2006. (IDEA-Projekt),. http://idea.dipsc fm.uninsubria.it/f rontend/docs/re ports/report_upg rade_codes.pdf

applying: activity = PR/2.1 × (1-^{e-∧†}) ⇒ ≤ 37 days exposed at sea level

 $(\mathbf{6})$

- cosmic activation of metals is measurable with high sensitive Ge-spectrometry
- the exposure history of the investigated samples is accessible
- deviation from secular equilibrium in the primordial decay chains cannot be used for dating stainless steel production, but seems to reflect a mean age of the scrap material
- cosmogenic production rates in Cu can be rather well estimated by the Monte Carlo method

Further possible metal targets:

Al, Au, Cr, Co, Hg, Mn, Ni, Ti, V, W and Zn

enlarge the database on cosmic induced production rates also for testing the Monte Carlo methods

