Solar Neutrino Results from Phase III of the Sudbury Neutrino Observatory

Alan Poon Berkeley Lab

Solar Neutrino Problem (~Y2K)

• Deficits were seen in all terrestrial solar v detectors (which were sensitive primarily to v_e).

Sudbury Neutrino Observatory (SNO)

Image courtesy National Geographic

Nucl. Inst. Meth. A449, 127 (2000)

Detecting v at SNO

- Measurement of $\nu_{\rm e}$ energy spectrum
- Weak directionality: $1 0.340 \cos\theta$

NC
$$v_x + d \rightarrow p + n + v_x$$

- Measure total ⁸B ν flux from the sun
- $\sigma(v_e) = \sigma(v_\mu) = \sigma(v_\tau)$

ES
$$V_x + e^- \rightarrow V_x + e^-$$

- Low Statistics
- $\sigma(v_e) \approx 6 \sigma(v_\mu) \approx 6 \sigma(v_\tau)$
- Strong directionality: $\theta_e \le 18^\circ$ ($\tau_e = 10 \text{ MeV}$)

"Smoking gun" for flavor transformation

Does the total flux of solar neutrinos equal the pure v_e flux?

Measure:

Transformation to another active flavor if:

Alternatively...

$$\frac{CC}{ES} = \frac{v_e}{v_e + 0.15(v_\mu + v_\tau)} \longrightarrow \phi^{CC}(v_e) < \phi^{ES}(v_x)$$

Flavor transformation can be demonstrated without any assumption on the Standard Solar Model prediction of the total neutrino flux.

SNO Phase I: Pure Heavy Water

 $\sigma = 0.5 \text{ mb}$ 2H+n 6.25 MeV 3H

- assumed an undistorted
 ⁸B spectrum; but neutrino
 oscillation can have energy
 dependence
- a null hypothesis test
- large NC uncertainties when the energy constraint is removed

Phase II ($D_2O + 2$ tonnes NaCI) - Ended Sep. 2003 - $n + {}^{35}CI \rightarrow {}^{36}CI + \gamma's(\Sigma E_{\gamma} = 8.6 \text{ MeV})$

- High neutron detection efficiency (~41%)

 use of light isotropy removed assumption of ⁸B shape in physics extraction

• total NC flux uncertainty ~8.4%

• Strong CC-NC anti-correlation (-0.52)

Phase III : ³He counters

rrrrr

Better CC flux measurement

SNO Detector: Current Status

since 28th November, 2006

Getting the Last Drop of D₂O

The acrylic vessel was completely emptied at 14:45 (Sudbury time) on 28th May, 2007.

NCD Deployment

Source		PMT NC)
Laserball	337-619 nm	Optics	Source-manipulator system capable of 2-5 cm positional accuracy
¹⁶ N	6.13 MeV γ	Energy	
⁸ Li	e ⁻ spectrum		
AmBe	n	Neutron eff	
²⁵² Cf	n		
²⁴ Na 🔵	n		Ropes
Th	low E γ	Bkgrd.	
Rn 🔍	low Ε γ	PDFs	Source
	Distribute	d source	

Optical Calibration

Salt phase

NCD phase

- $\Delta E/E = 1.1\%$
- Position and energy resolutions are comparable to the salt phase

²⁴Na method

Monte Carlo method

- 2005 injection points
- 2006 injection point

²⁴Na mixing during the 2006 spike

²⁴Na Mixing

Neutron Backgrounds

Instrumental Background Cuts

- Time domain cuts
- Frequency domain cuts
- Burst cuts

Instrumental Backgrounds

Problems with Other Strings

Simulating an NCD Pulse

Pulse simulation : α

on : α energy loss, α straggling, α multiple scattering electron-ion pair generation electron drift, diffusion electron multiple scattering ion mobility electron avalanche space charge signal generation, electronics, noise

Alpha Pulse Simulation

• Relative contributions of U, Th and Po alphas fit using data above the neutron (signal) energy window.

Alpha Energy Spectrum

Relative contributions of these different systematics are constrained by the neutrino data

Blind Analysis

- First month of neutrino data open
- Then only 20% open to Dec. 2005 to finalize instrumental background cuts (*instrumental cut bias*)
- Thereafter include hidden fraction of neutrons that follow muons (*change S/B ratio*)

AND

• Omit an unknown fraction of candidate events (*change S/B ratio*)

Detailed internal documentation, review by "topic committees"

Box Opened May 2, 2008

Live time	385.17 days		
NCD raw triggers	1,417,811	PMT raw triggers	146,431,346
NCD v candidates	7,302	PMT υ candidates	2,381

- PDFs and observables
- Systematic uncertainties
- Backgrounds
- 62-parameter likelihood function
 - 13 CC flux energy bins
 - 13 ES flux energy bins
 - NC flux
 - 35 systematic parameters

3 independent algorithms to determine the neutrino fluxes

$$L = L_{PMT} + L_{NCD}$$

$$L_{PMT} = -\sum_{d=1}^{N_d} \log\left(\sum_{s=1}^{N_s} n_s f_s(\bar{x_d})\right) + \sum_{s=1}^{N_s} n_s - \frac{1}{2} \sum_{p=1}^{N_p} \left(\frac{\lambda_p - \bar{\lambda_p}}{\bar{\sigma_p}}\right)^2$$
$$L_{NCD} = -\sum_{d=1}^{N'_d} \log\left(\sum_{s=1}^{N'_s} n'_s f'_s(\bar{x_d})\right) + \sum_{s=1}^{N'_s} n'_s - \frac{1}{2} \sum_{p=1}^{N'_p} \left(\frac{\lambda'_p - \bar{\lambda_p}}{\bar{\sigma_p}}\right)^2$$

Markov Chain Monte Carlo (MCMC)

Try to sample parameter space (instead of a 62-parameter MINUIT fit)

Metropolis-Hastings method

After "burn-in" the start point is forgotten and the algorithm samples the function correctly.

Systematics Table

Nuisance Parameter	NC uncert.	CC uncert.	ES uncert.
	(%)	(%)	(%)
PMT energy scale	±0.6	±2.7	±3.6
PMT energy resolution	±0.1	±0.1	±0.3
PMT radial scaling	± 0.1	±2.7	± 2.7
PMT angular resolution	± 0.0	± 0.2	± 2.2
PMT radial energy dep.	±0.0	±0.9	±0.9
Background neutrons	±2.3	± 0.6	± 0.7
Neutron capture	±3.3	±0.4	±0.5
Cherenkov/AV backgrounds	± 0.0	±0.3	±0.3
NCD instrumentals	±1.6	± 0.2	± 0.2
NCD energy scale	±0.5	±0.1	±0.1
NCD energy resolution	±2.7	±0.3	± 0.3
NCD alpha systematics	±2.7	±0.3	± 0.4
PMT data cleaning	±0.0	±0.3	±0.3
Total experimental uncertainty	±6.5	±4.0	±4.9
Cross section [16]	_	±1.2	±0.5

- NCDetection efficiency3.3%NCD energy resolution2.7%NCD alpha background2.7%Neutron background2.3%
- **CC** PMT energy scale 2.7%
 - PMT radial scale 2.7%

Opening the Box

ES 5th energy bin posterior

Three algorithms :

- Markov Chain Monte Carlo (MCMC)
- Maximum Likelihood with randomly sampled systematics
 - Maximum Likelihood with floating and shift-re-fit systematics

Post box opening : (1) 10% difference in NC flux uncertainty between analyses (2) MCMC ES flux low by 0.5 σ

Results

Compare to Salt Phase

NCD

Comparisons

Comparisons

 $\phi_{\text{SSM}} = 569(1\pm0.16) \times 10^4 \text{ cm}^{-2} \text{ s}^{-1}$ (BSB05-OP: Bahcall, Serenelli, Basu Ap. J. 621, L85, 2005).

MSW Contours

Summary

- A model independent measurement of the ⁸B flux
- Improved precision on mixing angle $\boldsymbol{\theta}$
- Reduced correlation between CC and NC
- Different systematics
- Agreement with previous measurements

More from SNO

- LETA (Low E Threshold Analysis) of Phases I and II (T=3.5-4 MeV)
- Muons, atmospheric $\boldsymbol{\nu}$
- Three-phase solar neutrino analysis
- Three-neutrino mixing analysis
- Three-phase *hep* flux
- Three-phase solar neutrino Day-Night Asymmetry

arXiv:0806.0989v1 [nucl-ex]

Expect the Unexpected

• Found at the bottom of the cavity:

The SNO Collaboration

The SNO collaboration

B. Aharmim,⁶ S.N. Ahmed,¹⁴ J.F. Amsbaugh,¹⁸ A.E. Anthony,¹⁶ J. Banar,⁹ N. Barros,⁸ E.W. Beier,¹³ A. Bellerive,⁴ B. Beltran,^{1,14} M. Bergevin,^{7,5} S.D. Biller,¹² K. Boudjemline,⁴ M.G. Boulay,^{14,9} T.J. Bowles,⁹ M.C. Browne,^{18,9} T.V. Bullard,¹⁸ T.H. Burritt,¹⁸ B. Cai,¹⁴ Y.D. Chan,⁷ D. Chauhan,⁶ M. Chen,¹⁴ B.T. Cleveland,¹² G.A. Cox-Mobrand,¹⁸ C.A. Currat,⁷ X. Dai,^{14,12,4} H. Deng,¹³ J. Detwiler,^{18,7} M. DiMarco,¹⁴ P.J. Doe,¹⁸ G. Doucas,¹² P.-L. Drouin,⁴ C.A. Duba,¹⁸ F.A. Duncan,^{15,14} M. Dunford,^{13,*} E.D. Earle,¹⁴ S.R. Elliott,^{9,18} H.C. Evans,¹⁴ G.T. Ewan,¹⁴ J. Farine,⁶ H. Fergani,¹² F. Fleurot,⁶ R.J. Ford,^{15,14} J.A. Formaggio,^{11,18} M.M. Fowler,⁹ N. Gagnon,^{18,9,7,12,15} J.V. Germani,^{18,9} A. Goldschmidt,^{9,†} J.TM. Goon,¹⁰ K. Graham,^{4,14} E. Guillian,¹⁴ S. Habib,^{1,14} R.L. Hahn,³ A.L. Hallin,^{1,14} E.D. Hallman,⁶ A.A. Hamian,¹⁸ G.C. Harper,¹⁸ P.J. Harvey,¹⁴ R. Hazama,^{18, ‡} K.M. Heeger,^{18, §} W.J. Heintzelman,¹³ J. Heise,^{14, 9, 2} R.L. Helmer,¹⁷ R.J. Hemingway,⁴ R. Henning,^{7,¶} A. Hime,⁹ C. Howard,^{1,14} M.A. Howe,¹⁸ M. Huang,^{16,6} P. Jagam,⁵ B. Jamieson,² N.A. Jelley,¹² K.J. Keeter,^{14, **} J.R. Klein,¹⁶ L.L. Kormos,¹⁴ M. Kos,¹⁴ A. Krüger,⁶ C. Kraus,¹⁴ C.B. Krauss,^{1, 14} T. Kutter,¹⁰ C.C.M. Kyba,¹³ R. Lange,³ J. Law,⁵ I.T. Lawson,^{15,5} K.T. Lesko,⁷ J.R. Leslie,¹⁴ J.C. Loach,^{12,7} R. MacLellan,¹⁴ S. Majerus,¹² H.B. Mak,¹⁴ J. Maneira,⁸ R. Martin,¹⁴ K. McBryde,¹⁰ N. McCauley,^{13,12, ††} A.B. McDonald,¹⁴ S. McGee,¹⁸ C. Mifflin,⁴ G.G. Miller,⁹ M.L. Miller,¹¹ B. Monreal,¹¹ J. Monroe,¹¹ B. Morissette,¹⁵ A. Myers,¹⁸ B.G. Nickel,⁵ A.J. Noble,¹⁴ N.S. Oblath,¹⁸ H.M. O'Keeffe,¹² R.W. Ollerhead,⁵ G.D. Orebi Gann,¹² S.M. Oser,² R.A. Ott,¹¹ S.J.M. Peeters,^{12, #} A.W.P. Poon,⁷ G. Prior,⁷ S.D. Reitzner,⁵ K. Rielage,^{9,18} B.C. Robertson,¹⁴ R.G.H. Robertson,¹⁸ E. Rollin,⁴ M.H. Schwendener,⁶ J.A. Secrest,¹³ S.R. Seibert,¹⁶ O. Simard,⁴ J.J. Simpson,⁵ L. Sinclair,⁴ P. Skensved,¹⁴ M.W.E. Smith,^{18,9} T.D. Steiger,¹⁸ L.C. Stonehill,^{9,18} G. Tešić,⁴ P.M. Thornewell,^{12,9} N. Tolich,^{7,18} T. Tsui,² C.D. Tunnell,¹⁶ T. Van Wechel,¹⁸ R. Van Berg,¹³ B.A. VanDevender,¹⁸ C.J. Virtue,⁶ T.J. Walker,¹¹ B.L. Wall,¹⁸ D. Waller,⁴ H. Wan Chan Tseung,¹² J. Wendland,² N. West,¹² J.B. Wilhelmy,⁹ J.F. Wilkerson,¹⁸ J.R. Wilson,¹² J.M. Wouters,⁹ A. Wright,¹⁴ M. Yeh,³ F. Zhang,⁴ and K. Zuber^{12, §§}

University of Alberta, University of British Columbia, Carleton University, University of Guelph Laurentian University, Queen's University SNOLAB, TRIUMF

> Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, Louisiana State University, MIT, University of Pennsylvania, University of Texas at Austin, University of Washington

LIP (Lisbon)

University of Oxford

