Search for Solar Axions with GERDA

M.Tarka

University of Zurich Physics Institute

11.06'08

GERDA Meeting LNGS 9-11 June 2008

- What are Solar Axions
- Principle of Detection
- Why Solar Axions
- Expected conversion rates
- Prospects for GERDA
- What should be done

Principle of Detection

Nucleus, Z

$$R(E) = (2\pi) \cdot \frac{2\hbar cV}{v_c^2} \sum_G |S(G)|^2 \frac{d\sigma}{d\Omega} \frac{1}{|G|^2} \frac{d\phi}{dE} \cdot \left[erf(\frac{E_a - E_1}{\sqrt{2} \cdot \sigma_d}) - erf(\frac{E_a - E_2}{\sqrt{2} \cdot \sigma_d}) \right]$$

$$S(\vec{G}) = [1 + e^{\frac{i\pi}{2}(h+k+l)}] \times [1 + e^{i\pi(h+k)} + e^{i\pi(h+l)} + e^{i\pi(k+l)}]$$

$$E_a = \hbar \omega \frac{|\vec{G}|^2}{2\vec{k}\vec{G}} = \hbar c \frac{|\vec{G}|^2}{2\vec{u}\vec{G}}$$

Bragg condition

Sun is biggest axion source in the neighbourhood:

$$\phi_{tot} \approx 3.9 \cdot 10^{13} cm^{-2} s^{-1}$$
 at $g_{a\gamma\gamma} = 1 \cdot 10^{-10} \text{ GeV}^{-1}$

Rate of photon emission depends on:

- Crystallographic properties
- Conversion cross section
- Axion energy distribution
- Crystal orientation with respect to the Sun
- Coupling constant

9

10

 $4 - 4.5 \text{ keV}, \quad \sigma = 0.425 \text{ keV},$

11

Energy range [keV]	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5	5-5.5
Counts / (day kg)	3	4.5	5.9	7.2	8.2	9.6	10.9
Energy range [keV]	5.5-6	6-6.5	6.5-7	7-7.5	7.5-8	8-8.5	8.5-9
Counts / (day kg)	10.7	9.3	8.8	8.7	7.5	6.3	5.7

$$g_{a\gamma\gamma} = 1 \cdot 10^{-8} \text{ GeV}^{-1}$$
¹³

Since no data yet available from GERDA

Statistical method to estimate the upper limit

$$\begin{split} \chi &= \sum_{i=1}^{n} [\bar{R}(t_i) - \langle \bar{R} \rangle] \cdot n_i & \quad = 0 : \text{no signal} \\ &\ge 0 : \text{signal+noise} \end{split}$$

$$g_{a\gamma\gamma} \leq g_{a\gamma\gamma}^{lim} \simeq K(\frac{b}{\text{cpd/kg/keV}} \times \frac{\text{kg}}{M} \times \frac{\text{years}}{T})^{1/8} \times 10^{-9} \text{GeV}^{-1}$$

K=2.5 for Ge, M=detector mass, T=exposure time

Background [cts/(kg keV year)]		1	0.1	0.01	0.001
Limit on g _{ayy} [1/GeV], Phase I–?	18 kg,T=2 7.6	64*10 ⁻¹⁰	5.72*10 ⁻¹⁰	4.3*10 ⁻¹⁰	3.22*10 ⁻¹⁰
Limit on gayy [1/GeV], Phase II–	38 kg, T=2 6.9	96*10 ⁻¹⁰	5.22*10 ⁻¹⁰	3.91*10 ⁻¹⁰	2.93*10 ⁻¹⁰

Prospects for GERDA

Prospects for GERDA

9 June '08 - Tokyo Helioscope reports: $g_{a\gamma\gamma} < 6*10^{-10}$ 1/GeV for m_a : 0 – 0.27 eV

- Analysing if an optimal crystal orientation exists
- Determining the orientation of the crystals before installing them
- Specifying the detector resolution in the low energy range $\sim [0 10 \text{ keV}]$
- Achieving a low energy threshold
- Background MC in the low energy range
- Get GERDA starting & collect data
- Time correlated background analysis in the low energy range

Thank you