

Pulse-shape analysis with a Broad-energy Ge-detector

Marik Barnabé Heider
<u>Dušan Budjáš</u>
Oleg Chkvorets
Schönert

• MPI für Kernphysik • Heidelberg

Outline

- 1. Motivation and goals
- 2. BEGe detector and set-up description
 - 3. Detector performance
 - 4. Pulse-shape analysis first results
- 5. Comparison BEGe and 18-segment coax
 - 6. Outlook

Novel p-type point contact HP-Ge detector for DBD search

P.S. Barbeau, J.I. Collar and O. Tench JCAP 0709:009,2007 (Crystal mass: 475 g) • J. Collar/Majorana collab. recognized potential of p-type point contact (**ppc**) HP-Ge for PSA

•Performance in terms of **MSE suppression** / SSE acceptance **comparable or even better** than **segmented detectors**

•Number of electr. contacts same as standard p-type coax. detect (1 HV + 1 signal cable per detector), less than for segmented detectors

•As signal cables & contacts are potential source of backgrounds, achievable **background level of ppc-detector** potentially **superior** to **high-segmented** detectors

Discussions Stefan Schönert / Canberra Olen
⇒ standard BEGe detectors could have
similar pulse shape performance as the ppc

•**BEGe** ordered by MPIK through DFG/TR27 special funds end of December `07, detector **delivered end of March'08**

Broad-energy Ge-detector

- covers energy range 3 keV 3 MeV
- enhanced efficiency for low-energy gammas
- low capacitance (\Rightarrow low noise)

MPIK Heidelberg

Dušcin Bucljćiš

The set-up

Data acquisition layout

- RC-feedback preamplifier 2002CSL with cooled FET noise: (with 0 pF input C) FWHM = 570 eV risetime: (with 30 pF input C) < 20 ns
- Analog spectroscopy amplifier with an ADC system
- Struck SIS 3301 flash-ADC with 14-bit resolution, 100 MHz sampling rate, digital shaping
- Analog timing-filter amplifier Canberra model 2111

Detector performance

- 60 Co spectrum recorded by an ADC with analog spectroscopy amplifier, shaping time = 12 µs
- bias voltage: 3800 V

Background spectrum

Preamplifier performance

Performance with FADC

• Co-60 spectrum, shaping time = $10 \mu s$ (digital shaping)

Dušcin Buicljćiš

11

Pulse-shape analysis

TFA parameters: 10 ns integration, 10 ns differentiation

Pulse-shape analysis

Single site event: signal generated by one cluster of charge carriers

Smaller energy \Rightarrow less steep pulse (if risetime is constant) Multiple site event = superposition of more smaller pulses

Current-maximum distribution

Current-maximum discrimination

• cut-profile determination from SSE dominated regions:

Current-maximum discrimination

PSA discrimination results

16

MPIK Heidelberg

Dušcin Budjćiš

PSA discrimination results

• results summary: suppression factors

BEGe vs. 18-fold segmented coax

comparison of discrimination power for ²²⁸Th spectrum

I. Abt, A. Caldwell, K. Kroeninger, J. Liu, X. Liu, and B. Majorovits: Nucl. Instr. Methods A 583 (2007), Eur. J. Phys. C 52 (2007) 19-27, GERE

GERDA meeting Nov. 2006 22

Dušcin Buicljćiš

BEGe vs. 18-fold segmented coax

comparison of discrimination power for ⁶⁰Co spectrum

I. Abt, A. Caldwell, K. Kroeninger, J. Liu, X. Liu, and B. Majorovits: Nucl. Instr. Methods A 583 (2007) 23

Summary / Outlook

- SSE/MSE discrimination with BEGe comparable to 18-fold segmented detector
- only first PS analysis performed based on a simple cut parameter, other PS parameters under study > room for improvement!

MPIK Heidelberg

Dušcin Budjćiš

Outlook (continued)

- Single compton-scattering measurements using coincidence with another HPGe detector (Dario)
- Collimator-scan of the Ge crystal to investigate pulse-shape dependance on interaction-position
- PSA efficiency dependance on HV (influence on chargecarrier mobility)

P. S. Barbeau, J. I. Collar, O. Tench <u>arXiv:nucl-ex/0701012v1</u>

MPIK Heidelberg

Backup slides

Dušcin Bucljćiš

Coax vs. ppc pulse-shapes

P. S. Barbeau, J. I. Collar, O. Tench arXiv:nucl-ex/0701012v1

²²⁸Th current-maximum distribution histograms

²²⁸Th current-maximum distribution histograms

²²⁸Th current-maximum distribution (unnormalised)

30

⁶⁰Co current-maximum distribution with cut

⁶⁰Co current-maximum distribution with cut (zoom)

²²⁶Ra current-maximum distribution with cut

Dušcin Bucljćiš

'b-energy.114_cal.txt' 'spectrum_cutN_fit_cal.114.txt'

²²⁶Ra spectrum with cut

Table of results

	E (keV)	reduction	±	bck. red.	±	suppresion	±
²²⁶ Ra	351.9	38.74%	0.33%	46.68%	1.29%	2.58	0.24
-	609.3	22.20%	0.18%	35.80%	1.81%	4.51	0.41
	1120.3	13.29%	0.20%	35.91%	1.23%	7.52	0.93
	1764.5	13.29%	0.13%	25.91%	1.51%	7.52	0.74
	1847.4	12.88%	0.39%	43.92%	1.65%	7.76	1.35
	2118.6	14.75%	0.42%	33.27%	1.51%	6.78	1.14
	2204.2	15.28%	0.21%	28.86%	1.99%	6.54	0.77
	2447.9	14.55%	0.21%	18.25%	2.27%	6.87	0.83
⁶⁰ Co	1173.2	11.96%	0.05%	12.97%	0.59%	8.36	0.55
	1332.5	11.45%	0.05%	7.76%	0.80%	8.74	0.58
	2505.7	0.49%	0.01%	0.57%	0.15%	205.74	26.48
²²⁸ Th	510.77	27.64%	0.25%	41.84%	1.23%	3.62	0.34
	583.19	24.41%	0.06%	39.43%	1.63%	4.10	0.20
	860.56	17.14%	0.15%	50.19%	1.14%	5.84	0.54
	1592.5	91.01%	0.62%	58.30%	1.34%	1.10	0.09
	1620.5	13.20%	0.45%	56.42%	0.90%	7.57	1.40
	2103.5	9.10%	0.29%	46.86%	0.61%	10.99	1.94
	2614.5	13.19%	0.06%	8.97%	3.51%	7.58	0.49

35