# TG10 Monte Carlo Status Report

**GERDA Meeting LNGS June 2008** 

on behalf of TG10

Max-Planck-Institut für Physik, München

GERDA Meeting LNGS 09-06-2008

#### **Overview**

#### Simulation of Background from Strings

#### Monte Carlo Campaign 2

**Pulse Shape Simulation** 

MaGe-Paper

Calibration no

not covered here, dedicated talk afterwards

GERDA Meeting LNGS 09-06-2008

# Simulation of Bkg from Strings - Setup

- Simulation of background contribution of strings using nominal (ideal) Phase II Array
  - nominal (ideal) Array: 7 Strings with 3 detectors each



- 7 Strings with 3 detectors each
- 7 Strings hexagonally arranged



- Detectors: "Siegfried" type, n-type
  - 18-fold segmented: 3-fold along z, 6-fold in azimuthal angle
  - true coaxial:  $r_i = 0.5$  mm,  $r_o = 37.5$  mm, height = 70 mm
    - $\Rightarrow$  mass of 1.616 kg  $\Rightarrow$  total enriched Ge mass of 33.9402 kg

## Simulation of Bkg from Strings - Sources

#### Simulation takes into account:

• natural radioactivity: whole chains simulated

• assume secular equilibrium, unless different screening results



- "man made" radioactivity 137Cs: 661.6 keV
- **cosmogenic activation** <sup>60</sup>Co: 2158.5 keV 2505. keV (summation peak 1173 + 1332 keV)
- everything else from screening: i.e. <sup>110m</sup>Ag: some

**10 million** events generated for each isotope and each part, **factor 100** more than previous simulations

### Simulation of Bkg from Strings - Analysis

• Energy smeard with

 $\sigma = \frac{\sqrt{(0.0405^2 * E + 1.31^2)}}{\sqrt{(\ln 2 * \sqrt{(8)})}}$ 

(REGe detector resolution)

FWHM(2039 keV) = 3.78 keV

- Energy threshold cut of 10 keV for core and segments
- Energy Cut (ROI) : 2029 keV <  $Q_{_{\beta\beta}}$  < 2049 keV
- Segment anti-coincidence
- Contamination taken from screening results

(http://www.mpi-hd.mpg.de/ge76/internal/tg11\_internal/Screening\_Results.pdf)

### Simulation of Bkg from Strings - Setup

Holder:



# Simulation of Bkg from Strings - Results

| Holder:            | Bkg Color               | g Color means: only upper limits from screening |                         |                         |                         |
|--------------------|-------------------------|-------------------------------------------------|-------------------------|-------------------------|-------------------------|
| overall SS         | Copper                  | Teflon                                          | Signalcable-guide       | HVcable-guide           | SupportStrings          |
| Mass per Part[kg]  | 0.0320                  | 0.0048                                          | 0.0013                  | 0.0014                  | 0.0125                  |
| Mass in Array [kg] | 0.6728                  | 0.1006                                          | 0.0281                  | 0.4690                  | 0.0875                  |
| cts/(kg keV y)     | 9.56 * 10 <sup>-₅</sup> | 1.54* 10 <del>'</del>                           | 3.39 * 10 <sup>-₅</sup> | 4.05 * 10 <sup>-₅</sup> | 2.75 * 10 <sup>-6</sup> |

Sum Holder: 0.32675 \* 10<sup>-3</sup> cts/(kg keV y)

| Cable: | Assume contmination | of Kapton: 0.001 | . Bq/kg for each | n isotope |
|--------|---------------------|------------------|------------------|-----------|
|--------|---------------------|------------------|------------------|-----------|

| overall SS         | Cable       | Signal Lines            | Signal Connection        | Signal Connection Lines | HV Cable                |
|--------------------|-------------|-------------------------|--------------------------|-------------------------|-------------------------|
| Mass per Part[kg]  | 0.000353    | 0.00264                 | 0.00106                  | 0.0029                  | 0.0016                  |
| Mass in Array [kg] | 0.007405    | 0.05534                 | 0.00739                  | 0.0.020293              | 0.0115                  |
| cts/(kg keV y)     | 1.66 * 10-4 | 1.88 * 10 <sup>-5</sup> | 5.169 * 10 <sup>-₅</sup> | 2.29 * 10 <sup>-6</sup> | 2.45 * 10 <sup>-4</sup> |

Sum Cable: 0.48468 \* 10<sup>-3</sup> cts/(kg keV y)

### Simulation of Bkg from Strings - Setup



### Simulation of Bkg from Strings - Results

#### Electronics: Assume contmination of Electronics of: 0.01 Bq/kg for each isotope Assume contmination of Kapton: 0.001 Bq/kg for each isotope

| overall SS           | Junctionboard           | Electronics box | Kapton Cable            |
|----------------------|-------------------------|-----------------|-------------------------|
| Mass per String [kg] | 0.0607                  | 0.0100          | 0.0068                  |
| Mass in Array [kg]   | 0.4205                  | 0.0700          | 0.0473                  |
| cts/(kg keV y)       | 2.75 * 10 <sup>-6</sup> | 1.95 * 10-4     | 2.85 * 10 <sup>-5</sup> |

#### Sum Electronics: 0.226 \* 10<sup>-3</sup> cts/(kg keV y)

#### Matrix: 180 Pogo pins included (realistic Phase II setup)

| overall SS           | Copper                  | Copperscrews            | Iglidur      | Murtfeldt   | Pins        | Teflon                  |
|----------------------|-------------------------|-------------------------|--------------|-------------|-------------|-------------------------|
| Mass per String [kg] | 1.0840                  | 0.0200                  | 0.0040       | 0.0670      | 0.0044      | 0.0340                  |
| Mass in Array [kg]   | 7.5110                  | 0.1400                  | 0.0280       | 0.4690      | 0.0309      | 0.2380                  |
| cts/(kg keV y)       | 1.91 * 10 <sup>-₅</sup> | 1.57 * 10 <sup>-₅</sup> | 8.209 * 10-5 | 9.48 * 10-6 | 2.18 * 10-4 | 3.01 * 10 <sup>-6</sup> |

Sum Matrix: 0.347 \* 10<sup>-3</sup> cts/(kg keV y)

### Simulation of Bkg from Strings - Results

Above Matrix:

- statistics too low! → take estimate of decays from GSTR-08-10
- GSTR-08-10: similar setup, for cables: 78.9 \* 10<sup>6</sup> <sup>208</sup>Tl decays simulated
- 322 events in 200 keV window

using these information estimate of bkg of Cable Chain above Matrix was done

208TI(232Th):

```
Last meter of Stainless Steel: 9.74 * 10<sup>-5</sup> cts/(kg keV y)
```

Last meter of Copper: 1.09 \* 10<sup>-6</sup> cts/(kg keV y)

<sup>214</sup>Bi(<sup>238</sup>U):

at equal contamination approx. factor 10 less due to branching ratios

**Steel**: 1.07 \* 10<sup>-4</sup> cts/(kg keV y)

```
Copper: 1.2 * 10<sup>-6</sup> cts/(kg keV y)
```

# Simulation of Bkg from Strings - Summary

| Part               |         | Background contribution              |
|--------------------|---------|--------------------------------------|
|                    |         | [10 <sup>-4</sup> counts/(kg·keV·y)] |
| Holder             |         | 3.27                                 |
| Cabling            |         | 4.84                                 |
| Electronics        |         | 2.26                                 |
| Matrix             | Pins    | 2.18                                 |
|                    | Iglidur | 0.82                                 |
|                    | Screws  | 0.16                                 |
|                    | Copper  | 0.19                                 |
| Murtfeldt + Teflon |         | 0.12                                 |
| Steel Chain        |         | 1.07                                 |
| Total              |         | 14.91                                |

- String saturates full background budget
- Keep in mind that screening limits were used!

### Monte Carlo Campaign 2

#### **Goal**:

- Produce realistic energy spectrum
  - Give estimate of background in ROI

Meeting on 22 – 23 April in Munich

Identified list of backgrounds:

- Internal: Cosmogenic production
  - Internal radioactivity
  - Surface contamination
- **External**:  $\alpha$ -,  $\beta$ -,  $\gamma$ -particles from array
  - $\alpha$ -,  $\beta$ -,  $\gamma$ -particles from IAr
  - $\gamma$  from infrastructure
- <u>Neutrons</u>: n from rock
  - n produced in infrastructure
  - <u>Muons</u>: prompt and delayed (including Metastable states)
    - neutrons induced by muons

distributed the work

### Monte Carlo Campaign 2

- Consider new, subdominat, background sources and source that do not contribute in ROI to get realistic energy spectrum
  - neutrons in steel cryostat through fission or (α,n) reactions
     background index of <2·10<sup>-6</sup> counts/(keV·kg·y) at Q<sub>ββ</sub> (no cuts)
     -> can be reduced by a factor >2 by multiplicity cuts
  - external neutrons in neck region, unshielded by water
  - gammas by neutron capture in water tank (up to 9 MeV) or water (2.2 MeV)

Incoming  $\gamma$ -ray flux by n-captures in WT =  $10^{-7} \gamma/(\text{cm}^2 \cdot \text{s})$ ->  $10^5$  times smaller than external 2.6-MeV flux by <sup>208</sup>Tl

2.2-MeV  $\gamma$ -ray flux by (n, $\gamma$ ) in water **incoming** in the cryostat =  $10^{-10} \gamma/(\text{cm}^2 \cdot \text{s})$ ->  $10^4$  times smaller than 2.6-MeV flux by <sup>208</sup>Tl in cryostat

#### How to Group Array

#### What is best Phase II Array setup?

8 Phase I Crystals + 6 GTF + 14 Phase II Crystals

1) Phase I + GTF close to Phase II



2) Phase I + GTF far away from Phase II



### How to Align Array

#### 1) Align center of middle crystal

#### 2) Align top of crystals





### **Array Simulation**

Simulated: • 68Ge, 60Co inside crystals

- seperated sub-arrays, z-centered (black)
- seperated sub-arrays, align top (red)

Co-60 in ANG- and RG-Detectors

- <sup>208</sup>Tl in Kapton cables + copper holders
  - tight sub-arrays, z-centered (green)
  - tight sub-arrays, align top (blue)



GERDA Meeting LNGS 09-06-2008

# Monte Carlo Campaign 2

#### Updates of Geometry:

Phase I string nearly finished

Teflon parts

Real crystal dimensions

• Dynamic holder size

Hall A implemented



• Further small improvements

• . . .

- Still work ahead : realistic lock layout (neutrons through neck)
  - infrastructure outside watertank



#### **Pulse Shape Simulation**



#### **Pulse Shape Simulation**





GERDA Meeting LNGS 09-06-2008

#### **Pulse Shape Simulation**



#### **MaGe Paper**

uploaded on arXiv (0802.0860) on Feb 6<sup>th</sup> and submitted to IEEE Trans. Nucl. Scie.

TRANSACTIONS ON NUCLEAR SCIENCE (TNS)

#### MAGE - a GEANT4-based Monte Carlo

#### framework for low-background experiments

Yuen-Dat Chan<sup>1</sup>, Jason A. Detwiler<sup>1,2</sup>, Reyco Henning<sup>1,3</sup>, Victor M. Gehman<sup>2,4</sup> Rob A. Johnson<sup>2</sup>, David V. Jordan<sup>5</sup>, Kareem Kazkaz<sup>2,6</sup>, Markus Knapp<sup>7</sup>, Kevin Kröninger<sup>8,9</sup>, Daniel Lenz<sup>8</sup>, Jing Liu<sup>8</sup>, Xiang Liu<sup>8</sup>, Michael G. Marino<sup>2</sup>, Akbar Mokhtarani<sup>1</sup>, Luciano Pandola<sup>10</sup>, Alexis G. Schubert<sup>2</sup>, Claudia Tomei<sup>10</sup>

Reviews from IEEE-TNS disparate: Reviewer 1 "ok", Reviewer 2 14 pages (!) of comments (some meaningful, some not) and required major revision

Decision taken to withdraw paper and re-submit new manuscript

Focus to real novelties of MaGe, i.e. flexibility, position samplers, interfaces, physics models chosen

#### Conclusion

Simulation of Strings in nominal Phase II setup results in  $\sim$ 15 \* 10<sup>-4</sup> cts/(kg keV y )

MCC2 is well underway

Differences between tight and separated arrays marginal Tight array has better background discrimination

Pulse shape Simulation is making good progress

MaGe paper has been withdrawn and will be re-submitted

# Backup

#### **Array Simulation**

mass holder phase I: 1.0484 kg mass holder phase II: 0.448 kg mass cable phase II: 0.0112 kg <sup>208</sup>TI: 445.225 1/kg/y
<sup>208</sup>TI: 445.225 1/kg/y
<sup>208</sup>TI: 22832.1 1/kg/y

mass crystal phase I: 17.86 kg mass crystal GTF : 15.26 kg mass crystal phase II: 22.6235 kg <sup>68</sup>Ge: 4.2 1/kg/y
<sup>60</sup>Co: 30 1/kg/y
<sup>68</sup>Ge: 4.2 1/kg/y
<sup>60</sup>Co: 30 1/kg/y
<sup>60</sup>Co: 10 1/kg/y