Overview	Source Strength	Collimator Geometry	Outlook	Test Facility

Status of Calibration

Francis Froborg

University of Zurich

GERDA Collaboration Meeting, LNGS 09. June 2008

Overview	Source Strength	Collimator Geometry	Outlook	Test Facility
Overview				

- 2 Source Strength
- 3 Collimator Geometry

Estimate of Source Strength

Setup

- Phase I configuration
- 1 Calibration source: ⁶⁰Co or ²²⁸Th
- Collimator materials: Cu or W
- 10 Mio. events for each source and each collimator material simulated

Goals

- Determine type of source and collimator material
- Determine minimal source strength

Overview	Source Strength	Collimator Geometry	Outlook	Test Facility
Analysis				

 $\bullet\,$ Spectra convolved with energy resolution and normalized to cts/kg/d/keV

E _{peak} [keV]	FWHM [keV]	Ref.
1332.00	2.41	Günther et al. 1997
1621.12	3.02	Klapdor-Kleingrothaus et al. 2004
2103.52	3.86	Klapdor-Kleingrothaus et al. 2004
2614.53	3.27	Klapdor-Kleingrothaus et al. 2004

• Minimum activity of the source:

$$A = \frac{N}{T\epsilon_{tot}} \qquad \qquad \epsilon_{tot} = \epsilon_{peak} \cdot \epsilon_{event}$$

• ϵ_{peak} determined with integration of 5σ region of Gaussian plus linear background using a fit

Results: Energy Spectra

Francis Froborg

Results: Minimum Activity

⁶⁰ Co	Cu (1174 keV)	Cu (1333 keV)	W (1174 keV)	W (1333 keV)
ϵ_{peak}	0.8862	0.9575	0.9800	0.9596
ϵ_{event}	0.0792	0.0792	0.0112	0.0112
A _{min} [kBq]	39.58	36.63	253.09	258.46

²²⁸ Th	Cu (511 keV)	Cu (2615 keV)	W (511 keV)	W (2615 keV)
ϵ_{peak}	0.5019	0.7819	0.5735	0.9790
ϵ_{event}	0.0413	0.0413	0.0052	0.0052
A _{min} [kBq]	134.02	86.02	931.38	545.63

Collimator Geometry

Current

- Cylinder with h = 8cm and r = 3cm
- Opening angle: 120°

Goals

- Compromise between low background in parking position and good statistic during calibration
- Enough weight for the lowering system

Overview	Source Strength	Collimator Geometry	Outlook	Test Facility
Outlook				

- Detailed analysis of statistics in every detector for both phases with all three calibration sources
 - \Rightarrow Determine minimum activity
- Influence of parking position with final collimator geometry
- Comparison with measurements at test facility in Zurich

Overview	Source Strength	Collimator Geometry	Outlook	Test Facility
First Set	un			

- Nonsegmented detector dismountable from cryostat
- Dewar (*V* = 22I)
- Electronics for spectroscopy and pulse shape analysis
- Calibration source: type to be decided

