

Radon emanation results Radon in Argon

→ G. Zuzel H. Simgen
→ H. Simgen

#### Low-level instrumentation for material screening in GERDA

NPL Proficiency Test Exercise 2007 News from MPIK, Baksan, Hades and LNGS Status of GeMPI 3 and GeMPI 4 Status of the Radon Monitor





### $\gamma$ ray screening measurements for GERDA in the last four months

Note: no samples screened at Baksan and MPIK in this period because of renovation works

| Detector   | Sample description                   | Type of equipment / used for         | Mass     |
|------------|--------------------------------------|--------------------------------------|----------|
| LNGS-GeMPI | Axon Ag plated Cu wire 50 $\Omega$   | Coax cable 50 $\Omega$               | 80 g     |
|            | Vaqtech 1-CC-0712 50 $\Omega$        | Coax HV cable 50 $\Omega$            | 106 g    |
|            | Habia Ag plated Cu alloy wire        | Coax cable 50 $\Omega$               | 3.158 kg |
|            | Cuflon (with protective cover)       | Teflon covered with Cu               | 1.074 kg |
|            | Vaqtech 1-CC-0710 *)                 | Coax HV cable 50 $\Omega$            |          |
|            | Cuflon (without protective cover) *) | Teflon covered with Cu               |          |
| LNGS-GeMi  | Concrete drilling piece #1           | Concrete GERDA foundation            | 163 g    |
|            | Concrete drilling piece #2           | Concrete GERDA foundation            | 116 g    |
| LNGS-GePV  | Mapei Ultraplan Maxi                 | Self-leveling floor GERDA foundation | 139 g    |
| HADES      | PFA-PTFE 5 kV                        | HV cable                             | 295 g    |
|            | NOMEX 464 yarn                       | for cables in cryostat               | 167 g    |
|            | Transistors                          | for LArGe setup                      | 9 g      |
|            | Welding rods sample #1               | for cryostat welding (not used)      | 4.043 kg |



W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007 \*) measured and under analysis

## Screening in HADES of steel plates for cable chain

Status after 11 days => "Guideline values" measurement still ongoing

|        | Massic Activity<br>mBq/kg | Uncertainty<br>mBq/kg |
|--------|---------------------------|-----------------------|
| Ra-226 | 0.76                      | 0.2                   |
| Ra-228 | 0.6                       | 0.3                   |
| Th-228 | 0.35                      | 0.2                   |
| K-40   | 1.64                      | 0.61                  |
| Co-60  | 10.7                      | 0.6                   |
| Cr-51  | 4.3                       | 0.9                   |
| Co-58  | 0.14                      | 0.06                  |
| Mn-54  | 1.1                       | 0.1                   |



W. Hampel (MPIK HD) for TG11 **GERDA** Collaboration Meeting Assergi, November 5-7, 2007

from Mikael Hult

# Screening in HADES of welding rods sample #2 (actually used in the cryostat welding)

Status after 15 days => "Guideline values" <u>measurement still ongoing</u> Measured <u>without</u> prior cleaning

|   | Ra-226<br>Ra-228<br>Th-228<br>K-40 | Massic Activity<br>mBq/kg<br>0.91<br>< 0.3<br>< 0.5<br>< 1.6 | Uncertaint<br>mBq/kg<br>0.3 | y for comparison:<br><sup>228</sup> Th and <sup>60</sup> Co<br>specific activities<br>of welding rod<br>sample #1:<br>6.7 ± 1.2 mBq/kg |
|---|------------------------------------|--------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|   | Co-60                              | 2.0                                                          | 0.2                         | 131 ± 3 mBq/kg                                                                                                                         |
| • | Co-57                              | 0.22                                                         | 0.08                        |                                                                                                                                        |
|   | <b>Co-58</b>                       | 0.25                                                         | 0.06                        |                                                                                                                                        |
|   | Mn-54                              | 0.90                                                         | 0.11                        |                                                                                                                                        |
|   |                                    |                                                              |                             |                                                                                                                                        |

W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007

#### from Mikael Hult

# $\gamma$ ray screening results for cable materials

|                        | Det | Specific activity [mBq/kg] |                   |                  |                  |                   |                 |                    |                    |
|------------------------|-----|----------------------------|-------------------|------------------|------------------|-------------------|-----------------|--------------------|--------------------|
| Cable sample           |     | <sup>228</sup> Th          | <sup>228</sup> Ra | <sup>238</sup> U | <sup>235</sup> U | <sup>226</sup> Ra | <sup>40</sup> K | <sup>108m</sup> Ag | <sup>110m</sup> Ag |
| Cuflon                 | G   | < 7.2                      | < 6.5             | < 200            | < 5              | < 9.3             | 61 ± 16         |                    |                    |
| Teflon coated HV cable | н   | 6 ± 2                      | 4.5±1.5           | < 9              | < 3              | < 1.3             | 58 ± 8          | 1.8 ± 0.3          | 7.0 ± 1.0          |
| Atlas Axon             | G   | < 12                       | < 15              | < 530            | < 12             | < 12              | 230 ± 60        | 6.6 ± 2.1          |                    |
| Habia Teflon           | G   | < 4.7                      | < 6.9             | < 59             | < 1.4            | < 1.8             | 400 ± 40        | 0.78 ± 0.24        | 1.3 ± 0.2          |
| Caburn 1-CC-0712       | G   | < 11                       | < 8               | < 350            | < 8.4            | < 11              | 610 ± 80        | 5.0 ± 1.2          |                    |
| Caburn 1-CC-0710       | С   | < 11                       | < 15              |                  |                  | < 12              | < 100           |                    |                    |
| Kapton flat cable *    | G   | < 4.0                      |                   |                  |                  | 9 ± 6             | 130 ± 60        |                    |                    |
| Kapton pure (Dupont) * | G   | 1.4 ± 0.7                  | < 1.0             | < 27             | < 1.1            | 17 ± 8            | < 5.4           |                    |                    |

\* earlier measurements, included for comparison

- G measured with GeMPI at LNGS
- C measured with GeCris at LNGS
- H measured at Hades



W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007 Phase I: no problem (cable material not close to the crystals) Phase II: 2 mBq/kg of both <sup>226</sup>Ra and <sup>228</sup>Th → BGI (1.5–2.0)·10<sup>-3</sup> from Report GSTR-05-019 (K. Kröninger and X. Liu) → not far away from final goal

## Two long-lived silver isomers: <sup>108m</sup>Ag (halflife 418 years) <sup>110m</sup>Ag (halflife 250 days)





W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007

# Production of <sup>108m</sup>Ag and <sup>110m</sup>Ag by thermal and epithermal cosmic ray neutrons

| Deaction                                   | Halflife of | Cross section | Resonance integral |  |  |
|--------------------------------------------|-------------|---------------|--------------------|--|--|
| Reaction                                   | product     | thermal       | epithermal         |  |  |
| <sup>107</sup> Ag (n,γ) <sup>108m</sup> Ag | 418 a       | 1.0 barn      | not known          |  |  |
| <sup>109</sup> Ag (n,γ) <sup>110m</sup> Ag | 250 d       | 4.4 barn      | 69 barn            |  |  |

Measured at LNGS (outside the tunnel):

Thermal neutron flux (< 0.3 eV)</th> $1.4 \cdot 10^{-3}$  neutrons/cm<sup>2</sup>·sA. Rindi et al.<br/>NIM A272(1988)871Epithermal neutron flux (0.3 - 300 eV) $6.9 \cdot 10^{-3}$  neutrons/cm<sup>2</sup>·sA. Rindi et al.<br/>NIM A272(1988)871Specific saturation activity108mAg :<br/>110mAg :<br/> $\sim 1300$  mBq/kg Ag



W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007 Measured <sup>108m</sup>Ag and <sup>110m</sup>Ag activities in cables can be explained if the Ag content in some samples is of order 1 % (and if the resonance integral of <sup>107</sup>Ag is at least similar to that of <sup>109</sup>Ag).

## Environmental Radioactivity Proficiency Test Exercise 2007

Counting efficiency determination for  $\gamma$  ray sample screening: mostly based on MC simulations of detector and sample geometry

Needed for such MC simulations

- (1) outer dimensions of the Ge crystal
- (2) size and location of the inner hole
- (3) thickness of the dead layer
- (4) position of the crystal within the cryostat



CORRADO detector



W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007 For the CORRADO detector at MPIK Heidelberg: (2) and (3) not well known

Measure low and high energy  $\gamma$  ray sources and compare results with MC calculations varying the parameters of (2) and (3) until a good fit was obtained

#### Dusan Budjás





### Environmental Radioactivity Proficiency Test Exercise 2007

This (preliminary) optimized geometry of the CORRADO detector at MPIK was used in order to evaluate measurements of two NPL samples:

<u>Result</u>: on the average: -12% difference to the reference values for both samples was obtained

Deviation [%]

still a better characterization of the CORRADO detector is needed and is currently under way

#### from Dusan Budjás



'GL' sample: low-radioactivity liquid solution consisting of 10  $\gamma$ -emitting radionuclides



### Environmental Radioactivity Proficiency Test Exercise 2007





W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007

#### By: Mikael Hult, Joël Gasparro, Gerd Marissens

### Environmental Radioactivity Proficiency Test Exercise 2007





W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007

#### By: Mikael Hult, Joël Gasparro, Gerd Marissens

## News from $\gamma$ ray screening at MPIK and Baksan

#### Good news from MPIK:

Renovation of the LLL almost completed. Resume  $\gamma$  ray screening at the beginning of December (as promised in Geel)

#### Bad news from MPIK:

Problems with DARIO, Liquid N<sub>2</sub> filling tube blocked, Detector thus has been warmed up. Must be removed from shielding.

#### Good news from Baksan:

As reported in Geel, the 4 HPGe setup has been



renovated in the last few months. Currently a background measurement is running. γ ray screening for GERDA will be resumed shortly



W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007





# News from $\gamma$ ray screening at HADES

# First sandwich measurements for GERDA coming up soon

Sandwich detector setup at HADES

Scheduled for sreening

with the sandwich detector: electronic parts for the PMTs of LArGe

- 2 types of capacitors (small and large) and 1 type of resistors.
- For one PCB about 0.14 g of small capacitors, 2.5 g of large capacitors and 0.11 g of resistors will be used.
- Required sensitivity: <sup>228</sup>Th/<sup>228</sup>Ra is 4 Bq/kg and about one order of magnitude more relaxed for <sup>226</sup>Ra and <sup>40</sup>K.
- The total mass of the available components is about 100 g.



#### from Mikael Hult



## News from $\gamma$ ray screening at LNGS

## GATOR HPGe-Detector at LNGS

- Ultra-low background, 100 % efficient (2.2 kg) HPGe-spectrometer
- Shield: 5 cm of OFHC Cu from NA; 20 cm Plombum Pb (inner 5 cm: 3 Bq/kg <sup>210</sup>Pb), air-lock system and Nitrogen purge against Rn







W. Hampel (MPIK HD) for TG11 GERDA Collaboration Meeting Assergi, November 5-7, 2007 from Laura Baudis

## GATOR HPGe-Detector at LNGS

- First background spectrum: < 1 event/kg d keV above 40 keV</p>
- Goal: screen XENON100 and GERDA materials





#### from Laura Baudis

#### Location of GATOR:

in the Faraday cage of the former GALLEX/GNO counting lab in hall A of LNGS





Paper in preparation

# Measurements of extremly low radioactivity levels in stainless steel for the cryostat in GERDA

D. Budjáš<sup>a</sup>, W. Hampel<sup>a</sup>, G. Heusser<sup>a</sup>, K.T. Knöpfle<sup>a</sup>, M. Laubenstein<sup>b</sup>, W. Maneschg<sup>a\*</sup>, B. Schwingenheuer<sup>a</sup>, H. Simgen<sup>a</sup>

<sup>a</sup> Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany <sup>b</sup> Laboratori Nazionali del Gran Sasso (LNGS), S.S. 17km/bis km 18+910, I-67010 Assergi (AQ), Italy

October 1, 2007

