The Majorana Demonstrator Update and Detector Technologies

Kai Vetter Lawrence Livermore National Laboratory UC Berkeley

Update on the status of Majorana

Detector technologies

Craig Aalseth – DUSEL plans

Majorana as Demonstrator

- Majorana is currently envisioned as R&D project within DOE-Office of Nuclear Physics towards a 1-ton $0\nu\beta\beta$ -decay experiment
- The Majorana Demonstrator will explore and identify the most promising options for a ⁷⁶Ge-based experiment with the intention to be as complementary as possible with GERDA
- The Goal of the Demonstrator is:
 - Demonstration of ultra-low background [< 1 count/(ton year ROI)]
 - Explore most advanced and most promising detector technologies
 - Demonstrate feasibility in terms of scaling, cost, and schedule
 - Allow technology selection in 2013

Benchmarks of Achieved Goals

2

- Background level in ROI: <= 1 event/ton year
 - Defines total mass and lifetime of experiment:
 - ~ 60 kg of ^{Natural or depleted}Ge & ^{Enriched}Ge
 - Use 50 keV energy window around ROI
 - Operate for two years
- Signal sensitivity: Test KKDC
 - Defines ⁷⁶Ge mass and lifetime of experiment:
 - ~ 30 kg of ⁷⁶Ge
 - Operate for two years (at 86% enrichment)
- Demonstration of two most promising technologies
 - Operate P-type Point Contact (PPC) and N-type Segmented Contact (NSC) detectors

Reference Design

- "Standard" cryostats
 - Electroformed copper (EFCu) materials, internal shields
 - Ancient lead outer shield and active veto
 - LN2 (passive/radiation) cooling
- 60 kg of Ge crystals
 - A mixture of p-type and n-type crystals
 - P-type: Point-contact / PPC: 40 kg
 - N-type: 36-fold segmented /NSC: 20 kg
 - A mixture of enriched and natural or depleted Ge
 - 30 kg of 86% enriched 76Ge crystals (all PPC)
 - 30 kg of natural or depleted Ge crystals (20 kg NSC + 10 kg PPC)
 - 3 cryostats
 - Two for mixed PPC and one for NSC
 - Minimize interference in design, deployment, operation, and analysis

Schedule

- 3-phase approach:
 - Detector evaluation and demonstration ('07-'09)
 - Large (~1.5 kg) and highly-segmented n-type detectors (NSC)
 - Small (~0.75 kg) point contact p-type detectors (PPC)
 - Construction, characterization, and deployment ('09-'11)
 - 2-3 cryostats to optimize performance and schedules by minimizing interference in deployment and operation
 - Operation and analysis ('11-'13)

Highest risks/ challenges

- Backgrounds ...
 - Small parts
 - EFCu
- Detectors...
 - PPC: Production requirements and yields
 - NSC: Background vs. performance
- Materials ...
 - EFCu production facility underground
 - Ge processing, crystal growth
- Schedule ...
 - Coupling to underground laboratory DUSEL/SUSEL
- Funding (NSF/DOE) ...

Longer-term efforts/ collaboration opportunities

2

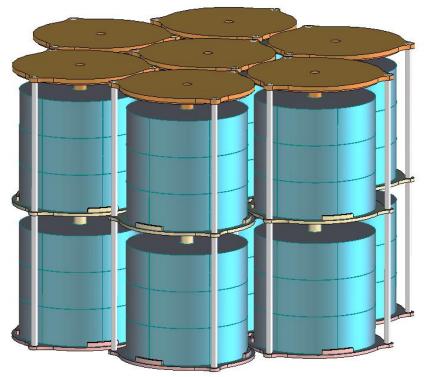
- In the context of one ton:
 - E.g. 1000 1kg detectors (cost, schedule)
 - Extremely low background
 - New fabrication capacities
 - Material processing
 - Crystal growth
 - Detector fabrication
 - Underground fabrication
 - Advanced, fast detector characterization
 - Advanced signal processing
 - Simulations (MaGe)

Near-term plans – Funding/ proposals

- DOE/NSF: DUSEL R&D
 - Demonstrator high risk items
 - Crystal and detector fabrication reliability, underground production
- Submission of Majorana Demonstrator proposal to DOE
- DOE operational funds
 - Universities
 - Nat'l Labs

P-Type Point Contact Detectors:

- Explore geometries, mass, impurity concentration requirements, and manufacturer:
 - Detector obtained and characterized:
 - 1, Univ. Chicago CANBERRA
 - Detectors ordered:
 - 1, PNNL CANBERRA
 - 1, LANL PhDs
 - Detectors to be ordered:
 - 1, ORNL PhDs
 - 2, Univ. Chicago ORTEC
 - Detectors being fabricated
 - 1, LBNL Paul Luke
 - + segmentation for time reference, absolute positioning, ...


N-Type Segmented Contact Detectors:

- 36-fold segmented, closed-ended coaxial detector (GRETA/ AGATA – type)
- Can be produced and operated
 - ~20 complex detectors fabricated and tested to date
 - 2 mm spatial resolution in 3D for individual interactions demonstrated
 - Gamma-ray tracking demonstrated (sequencing, imaging, ...)
- Background due to additional components?
 - Selection and location of components?
 - Impact on signal performance?
- GRET(IN)A prototype and SEGA detectors for test and evaluation of detector mount and readout concepts

NSC Detector Arrangement

- 7 2-detector "strings"
- 70 mm (diameter) x 80 mm (length)
- ~1.6 kg per detector
- Each string and each detector in string can be handled and replaced individually
- Central (HV) channel with cold frontend on top of string lid
- Segment electronics outside cryostat at a distance > 1 m
 - Reduce background
 - Reduce thermal load

Status of Majorana Demonstrator Kai Vetter RDA Meeting mber 5, 2007

Preliminary Design

Conclusions

- Majorana now Majorana Demonstrator as R&D project towards a 1-ton 0vββ experiment
- All high-level tasks are defined (task-, subtask- leaders) and making progress
- Critical milestones defined
- Proposals are being prepared for NSF and DOE
 - Majorana Demonstrator to DOE
 - Complementary DUSEL funds through NSF and DOE