Status of Phase II Detector production TG02

L. Bezrukov, A. Caldwell, <u>J. Janicskó</u>, M. Jelen, D. Lenz, J. Liu, X. Liu, B. Majorovits, V. Kornoukhov Consultant: I. Abt

LNGS Nov.2007 JJ

Reminder

- 37.5 kg Enriched Germanium with 87% ⁷⁶Ge first delivered to Munich, now stored underground in the HADES UGL (Geel).
- 50 kg of depleted GeO₂ also delivered to MPI is being used for purification and crystal pulling tests
- Previous purification test at FSUE Germaniy (Russia):
 - Total yield of high purity material 58%, in ZR 72% yield
 - Isotopic dilution effect was seen in "wet" chemistry procedure, no dilution during reduction and ZR
- New purification test started at PPM Pure Metals (Langelsheim, DE)

First purification test at PPM

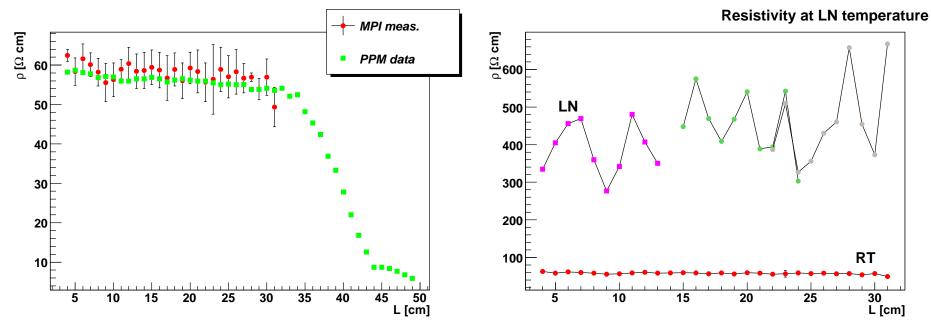
- The first purification test at PPM Pure Metals GmbH (Langelsheim) was performed in May-June 2007. Analysis of the resulting *Ge* metal completed.
- For the test 10.6 kg of depleted GeO_2 was used (leftover of the enrichment)
- The purity was measured with mass spectrometry methods and resistivity measurements were done
- Isotopic content was measured after each phase of the processing
- Main steps of the purification:
 - Reduction: In H_2 atmosphere and at high temperature the GeO_2 is reduced to metallic Ge
 - Mono-zone refinement (ZR): A molten zone is pulled over (slowly) the Ge
 ingot

Analysis after reduction

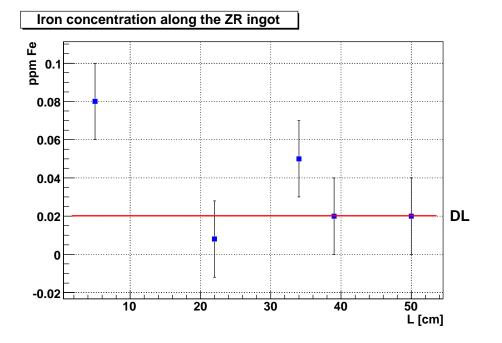
- Samples of *GeO*₂ and *Ge* metal (after reduction) were sent to Russia for two different MS measurements: Spark Source Mass Spectrometry (SSMS) and Inductively Coupled Plasma Mass Spectrometry (ICP-SM)
- Conclusion: no serious contamination, good quality starting material (4N or better).
- Samples for isotopic content measurement were taken.
- Resistivity measurements: in avarage 1 Ωcm , far from the intrinsic resistivity of 50 Ωcm
- Resulting *Ge* metal melted to fill a reduction "boat" and PPM started the zone-refinement

Example: results of ICP-MS

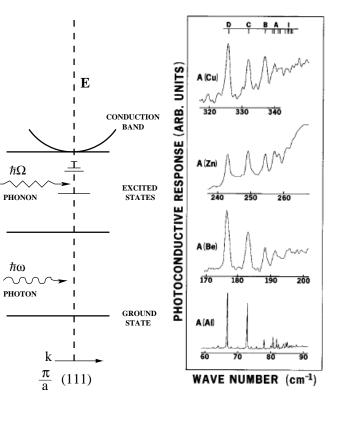
Element DL		GeO ₂	1/4	2/4	3/4	Eleme	ent DL	GeO ₂	1/4	2/4	3/4
	ppm _					ppm					
Li	0,006	< DL	<0.01	< DL	< DL	Sb	0,03	< DL	< DL	< DL	<dl< td=""></dl<>
Be	0,0005	< DL	< DL	< DL	< DL	Те	0,006	<0.02	< DL	< DL	<dl< td=""></dl<>
В	0,1	< DL	< DL	< DL	< DL	Cs	0,001	< DL	< DL	< DL	<dl< td=""></dl<>
Na	20	< DL	< DL	< DL	< DL	Ba	0,5	< DL	<7	<1.8	<dl< td=""></dl<>
Mg	1	< DL	< DL	< DL	< DL	La	0,003	< DL	< DL	< DL	<dl< td=""></dl<>
AI	2	< DL	< DL	<DL	< DL	Ce	0,01	< DL	< DL	< DL	<dl< td=""></dl<>
K	6	< DL	< DL	< DL	< DL	Pr	0,001	< DL	< DL	< DL	<dl< td=""></dl<>
Ca	7	<10	< DL	< DL	< DL	Nd	0,002	< DL	< DL	< DL	<dl< td=""></dl<>
Sc	0,02	< DL	< DL	< DL	< DL	Sm	0,0003	< DL	< DL	< DL	<dl< td=""></dl<>
Ti	0,4	< DL	< DL	< DL	< DL	Eu	0,0002	< DL	< DL	< DL	<dl< td=""></dl<>
V	0,5	< DL	< DL	< DL	< DL	Gd	0,0009	< DL	< DL	< DL	<dl< td=""></dl<>
Cr	2	< DL	< DL	< DL	< DL	Tb	0,0001	< DL	< DL	< DL	<dl< td=""></dl<>
Mn	0,2	< DL	< DL	<DL	< DL	Dy	0,0003	< DL	< DL	< DL	<dl< td=""></dl<>
Fe	5	< DL	< DL	<DL	< DL	Ho	0,0001	< DL	< DL	< DL	<dl< td=""></dl<>
Co	0,02	<DL	<DL	<DL	< DL	Er	0,0001	< DL	< DL	< DL	<dl< td=""></dl<>
Ni	0,3	<DL	<DL	< DL	< DL	Tm	0,0001	<DL	< DL	< DL	<dl< td=""></dl<>
Cu	0,2	<DL	<DL	<DL	< DL	Yb	0,0005	< DL	< DL	< DL	<dl< td=""></dl<>
Zn	2	<DL	< DL	< DL	< DL	Lu	0,0002	< DL	< DL	< DL	<dl< td=""></dl<>
Ga	0,1	<DL	< DL	< DL	< DL	Hf	0,01	< DL	< DL	< DL	<dl< td=""></dl<>
As	0,2	<DL	< DL	<DL	< DL	Та	0,01	< DL	< DL	< DL	<dl< td=""></dl<>
Se	0,3	<DL	<DL	< DL	< DL	W	83	< DL	< DL	< DL	<dl< td=""></dl<>
Rb	0,009	<DL	<DL	<DL	< DL	Re	0,003	< DL	< DL	< DL	<dl< td=""></dl<>
Sr	0,04	<DL	< DL	< DL	< DL	lr	0,0004	< DL	< DL	< DL	<dl< td=""></dl<>
Y	0,001	<DL	<DL	<DL	< DL	Pt	0,06	< DL	< DL	< DL	<dl< td=""></dl<>
Zr	0,02	<DL	<DL	<DL	< DL	Au	0,01	< DL	< DL	< DL	<dl< td=""></dl<>
Nb	0,02	<DL	<DL	< DL	<DL	Hg	0,6	<DL	< DL	<DL	<dl< td=""></dl<>
Mo	0,07	<DL	<DL	< DL	<DL	ΤI	0,0002	<DL	< DL	<DL	<dl< td=""></dl<>
Rh	0,01	<DL	<DL	< DL	<DL	Pb	0,2	<DL	< DL	<DL	<dl< td=""></dl<>
Pd	0,04	<0.35	<DL	< DL	<DL	Bi	0,002	<DL	< DL	<DL	<dl< td=""></dl<>
Ag	0,04	<DL	<DL	< DL	<DL	Th	0,0006	<DL	< DL	<DL	<dl< td=""></dl<>
Cd	0,004	<dl< td=""><td><dl< td=""><td><dl< td=""><td>< DL</td><td>U</td><td>0,0002</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>< DL</td><td>U</td><td>0,0002</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>< DL</td><td>U</td><td>0,0002</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	< DL	U	0,0002	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>


Analysis of the ZR material

- According to the specification given by PPM, the purity of the ZR material is 6N or better. Material with purity better than 6N cannot be analyzed only with MS
- Resistivity measurement: intrinsic resistivity of pure Ge is around 50 Ωcm
 ⇒ if the resistivity at room temperature is 50 Ωcm than the purity is 6N or better. ZR ingots are cut where the resistivity drops below 50 Ωcm
- Yield of high resistivity material is 60%
- The low resistivity tails are cut off and ZR once more \implies Total yield of 77%
- Estimated from the resistivity measurement at 77K, the net concentration of electrically active impurities is around $10^{11} \frac{imp}{cm^3}$, only one order of magnitude higher than the detector grade material


Resistivity at room temperature (left) and at LN temperature (right)

- MS measurements are difficult to interpret:
 - the two measurements show higher contamination for the samples from the low resistivity tail
 - they disagree on the quantity
 - difficult to follow the effect of ZR on one particular element



Element	ppm weight	Element	ppm weight	Element	ppm weight
Н	ND	Zn	< 0.02	Pr	<0.05
Li	<0.001	Ga	< 0.01	Nd	<0.2
Be	<0.001	Ge	OCHOBA	Sm	<0.1
В	<0.001	As	<0.1	Eu	<0.04
С	ND	Se	<0.2	Gd	<0.2
Ν	ND	Br	<0.1	Tb	<0.1
0	ND	Rb	<0.1	Dy	<0.3
F	0.4	Sr	<0.2	Но	<0.06
Na	<0.02	Y	<0.1	Er	<0.04
Mg	<0.01	Zr	<0.2	Tm	<0.05
AI	0.03	Nb	<0.1	Yb	<0.2
Si	0.02	Мо	<0.3	Lu	<0.1
Р	< 0.005	Ru	<0.1	Hf	<0.2
S	0.04	Rh	< 0.05	*Ta	ND
CI	ND	Pd	<0.3	W	<0.2
K	<0.02	Ag	<0.05	Re	<0.1
Ca	<0.01	Cd	<0.2	Os	<0.4
Sc	<0.01	In	<0.05	lr	<0.2
Ti	<0.01	Sn	<0.1	Pt	<0.2
V	<0.05	Sb	<0.05	Au	<0.1
Cr	<0.01	Те	<0.4	Hg	<0.3
Mn	<0.01		<0.05	TI	<0.1
Fe	0.05	Cs	<0.1	Pb	<0.3
Со	<0.01	Ba	<0.2	Bi	<0.1
Ni	< 0.05	La	<0.1	Th	<0.1
Cu	<0.02	Ce	<0.1	U	<0.1

Sample **4.3**, ^{dep}Ge after ZR at PPM Pure Metal, *Ta is material of the ion source.

- Hall-effect measurement can give the exact number of impurities and PTIS (Photo-thermal ionization spectroscopy) can identify the chemical elements
- Photothermal ionization setup is being prepared at IKZ, they will perform the measurements and we were promised help from Berkeley
- Single crystal is needed for this measuremenmts, they will be grown at IKZ

Isotopic composition

- Isotopic composition was measured after each step of the processing with surface ionization mass-spectrometer at the Institute of Microelectronics Technology and High Purity Materials RAS (Chernogolovka, Moscow).
- No isotopic dilution effect was observed at the level of \pm 0.01% (accuracy of measurements).

	Ge1a	Ge1b	Ge2b	Ge3b	Ge4b	Ge_i1	Ge_i3	Ge_i4	Gen
70	22.8	22.7	22.8	22.8	22.8	22.74	22.75	22.70	21.2
72	30.1	30.0	30.00	30.00	30.00	30.07	30.05	30.08	27.8
73	8.32	8.30	8.33	8.33	8.32	8.32	8.30	8.29	7.75
74	38.2	38.4	38.3	38.3	38.3	38.27	38.30	38.34	35.9
76	0.59	0.60	0.59	0.59	0.60	0.60	0.60	0.59	7.35

Ge1a and Ge1b are depleted GeO2, Ge2b - Ge4b are depleted Ge metal after reduction, samples Ge_i1 - Ge_i4 are Ge metal after zone-refinement, Ge n - natural germanium

Second Test

- Purification test combined with underground storage of the Ge in order to minimize cosmic exposure
 - Intermediate storage in a mine around Langelsheim: organized by PPM
 - Ge will be above ground only for processing and transportation
 - will give us a precise estimate of the exposure during the purification
- Maximize the yield of 6N material with a third pass of zone refinement, 80% and above
- Test should have been already done; waiting for news from PPM
- A third test is planned to improve the purity, will be a function of the previous results

Crystal pulling

Last meeting at Institut für Kristallzüchtung (IKZ) 01.10.2007. Summary:

- Czochralski puller modified for inductive heating (from resistive)
- Vacuum test of the Cz. puller done, up to $10^{-5}\,$ mbar
- 4" quartz crucible purchased (for up to 2" crystal) and they are waiting offers for 6" crucibles
- IKZ purchased nat. Germanium and they will start pulling test crystals soon
- IKZ will also help us with the characterization of the crystals, results coming soon ...

Crystal characterization

- MPI purchased detector grade crystal samples from Canberra and we delivered them to IKZ.
- Hall-effect measurement was done at low temperature (15K) in order to measure the concentration of electrically active impurities: they found 10^{10} impurities/ cm^3
- In addition Photothermal Ionization spectroscopy is needed in order to identify the impurities
- IKZ will grow sample crystals from ZR material from PPM and will help us to achieve detector grade purity

- After zone-refinement 6N purity (or better) was achieved
- Yield of 77% achieved after two steps of ZR (60% in one step). Further improvement still possible with more iterations.
- We have ongoing discussions (negotiations) about fine tuning of the ZR for improving yield and purity and reducing cosmic exposure
 - A second test is being done now to test the time needed above ground
 - Third test with depleted Ge is planned for improving the purity
- We are studying different measurement methods below the detection limit of mass spectrometry methods
- Sample crystals for analysis will be grown at IKZ (Berlin)
 - Setting up PTIS and Hall-effect measurements