

TG 2: Status report on Phase II prototype detector "Siegfried"

I. Abt, K. Ackermann, M. Altmann, A. Caldwell, M. Jelen, K. Kröninger, J. Liu, X. Liu, B. Majorovits, S. Mayer, F. Stelzer, P. Strube, S. Vogt

MPI für Physik, München, Germany

GERDA Collaboration Meeting, LNGS, 06/26 – 06/28/2006

Siegfried

- Phase II prototype n-type detector produced at Canberra-Eurisys
- Since March 2006: detector at MPI Munich
- Dimensions: Height: 69.8 mm
 - Outer Radius: 75.0 mm
 - Inner Radius: 5.0 mm
 - Mass: 1.63 kg
- Segmentation scheme:
- 6-fold in azimuthal angle ϕ
 - 3-fold in height z

Contacting

• Contacting scheme: Kapton printed-circuit-board

Test stand

Conventional vacuum test cryostat

Electronics

• Cold FET for core,

AC-coupled

• 18 warm FETs for

segments, DC-doupled

- Cologne (PSC 823)
 charge sensitive preamplifiers grouped into two "ears" (9 / 9+1)
- Thorough grounding

needed

Massive copper grounding plates

Resolutions (@ 1.3 MeV)

• Segments (ear) ~ 2.5 – 4 keV

Cross-talk correction

- Core FET cold
- Amplified signal is passed by the un-amplified signal \rightarrow cross-talk
- Easy to correct for one detector, but nightmare for an array
- Learn to not use FET close to detector

Co-60 spectra

Kevin Kröninger, MPI München

E [keV]

500 1000 1500 2000 2500 3000

10

0

GERDA Collaboration Meeting

Photon identification measurements I

Photon identification measurements II

Kevin Kröninger, MPI München

Data to Monte Carlo comparison I

Kevin Kröninger, MPI München

GERD

Data to Monte Carlo comparison II

Co-60 E_{thr} = 250 keV z = 10 cm

Data to Monte Carlo comparison III

Co-60 z = 10 cm $E_{thr} = 250 \text{ keV}$

- Data and Monte Carlo agrees well:
 - Energy spectra
 - Multiplicities
 - Suppression factors

→ Can trust our Monte Carlo calculations for background estimates

Pulse shape analysis I

- Feasibility study for analysis of pulse shapes
- Data with core and one segment only (TI-208 2.6 MeV vs. DEP)
- Follow three different approaches:
 - Likelihood discriminant based on event probabilities
 - X² analysis comparing pulse shapes to reference pulses
 - Neural network analysis using pulse shapes
- Use core and segment pulse shapes
- Work in progress, no optimization yet
- Note is upcoming

Pulse shape analysis II

• Preliminary results for neural network analysis

→ Pulse shape analysis works

Phase II prototype detector Siegfried works well

- Contacting scheme works
- Learned not to use cold FETs (cross-talk)
- Grounding scheme important
- Photon identification using anti-coincidences works
- Data to Monte Carlo comparison shows good agreement

(which means that Monte Carlo can be trusted)

• Pulse shape analysis feasible

- Detector will be send back to Canberra to be mounted in copper holder
- Submerge detector in liquid nitrogen afterwards \rightarrow new test stand

- Continue photon identification measurements (note)
- Continue pulse shape analysis (note)

• Note on detector characterization on the way (GSTR-06-008)