Water Tank

Goal of Task Group: Delivery and Installation of Water Tank & water recirculation system.

	Achieved	Date	Depend from
			Implications on
Definitive project	~	09/05	
Tendering	√	28/12/2005	
WT tender		13/3/2006	
awarded to	\checkmark	23/6/2006 (INFN)	
company			
Contract signed	X	by end july 2006	
	Λ	Maybe better sep07	
Executive project	v	2 month	
	X	end september 2006	

Water Tank

	Achieved	Date	Depend from or Implications on
Installation	X	Start 02/2007 ? TBD	Cryostat delivery (work onsite cannot be stopped for many months)
Mounting procedure	X X	28/12/2005 07/2006	Cryostat and Cu- shield insertion proc WT executive project
Integrated risk assessment analysis	X ongoing	10/09/2006	
End of installation	X	?	WT construction & Cryostat delivery
Water system	X	10/06 project < 12/06 ordered	

Table 1: GERDA Water Tank main features

WT specs in tender

Reference regulation for structural project:	API650
Further verification for seismic hazards:	Eurocodice 8
Quality certification of construction process:	ISO9001
Quality certification required for company:	ISO14001
Tank height / external diameter:	8.9 m / Ø 10.0 m
Height of the water level:	8.4 m
Effective capacity (m^3) :	633 m^3
Water tank bottom:	flat, plates head welded
Water tank roof:	conical from the shell, (Ø 4.5 m)
Water tank shell:	cylindrical, plates head welded
Water tank sheet-metal plates:	≈2 m
Angle between shell and roof:	≈6°
Bottom renforcement:	yes, at 1 feet level
Renforcement rings along the shell:	yes, 1 or 2
Water tank Material:	stainless steel AISI 304 L or 304 LN, or
	carbon steel plus appropriate coating
Thickness of the shell:	12 to 9 mm
Connections between plates:	welded
Welding type:	external MIG, internal TIG without
0.71	filler metal
Welding certification:	certified by the executing company
	fully X-ray tested
Approximative length of welds:	400 m
Flanges	
1 600 x 1400	elliptical manhole in the shell
1 DN 1200	in roof for cryostat neck equipped
	with custom flange
2 DN 500	manhole in roof for level,
2 DN 200	pressure and depressure safety devices
1 DN 50	net fit connection for N inlet
1 DN 300	for total drain compensation
2 DN 250	in roof for photomultiplier cables
2 DN 300	to drain tank completely in 20 h
2 DN 80	lateral for water recirculation
Weight of water tank (tons):	<20 tons
Weight of filled water tank:	650 tons
Operational over/underpressure:	±20-30 mbar
Safety device:	pressure/depressure ±20-30 mbar
Water recirculation:	yes, 2-3 m ³ /h
Water recirculation plant:	deionization, Radon stripping,
F	particulate removal
	parameter remova

Timing of WT and Structure (presented at GERDA Dubna meeting june 2005)

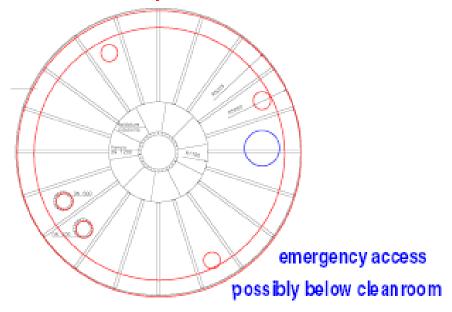
	(presented	ıaı	_	JL	/1/1	ノエ	λ.	ν	w	ma	11	10	Ci	11.	ıg	<u>. J'</u>	111	·	20	v.	J					
N	Ionth	1		2	3		4	5		6	7	7	8	3	9		10	•	11	1	2	13	3	14	1	15
Tank	Tendering																									
Tank	Engineering																									
Tank	Material Shipping																									
Tank	Work Shop Fab.																									
Tank	Site Fab.																									
Structure	Tendering																									
Structure	Workshop Fab. and Shipm.																									
Structure	Construction (on site)																									
Cryost.	Crystat Insertion																									
Structure	Construction (on site)																									
Tank	Construction (on site)																									
Tank	Test and Approval																									

Items To Be Defined

- Request on steel and steel certification, electrode etc.
 →no.
- Constructional details of the WT bottom plate (because of cryostat skirt interface)
- WT constructional procedure.
 - Tendered: Big aperture (4.5 m diam x 7 m h) in the WT mantle to insert the cryostat after WT completion.
 - What we need: Cryostat delivery and installed after WT bottom plate construction.

How long it will take realistically to install Cryostat, test it on-site, insert Cu, test again. Extimate >= 2 months.

- Positions of anchorage for PMs.
- Number, type and position of flanges for PM cables. Why not adopt Borexino solution


Possible problems

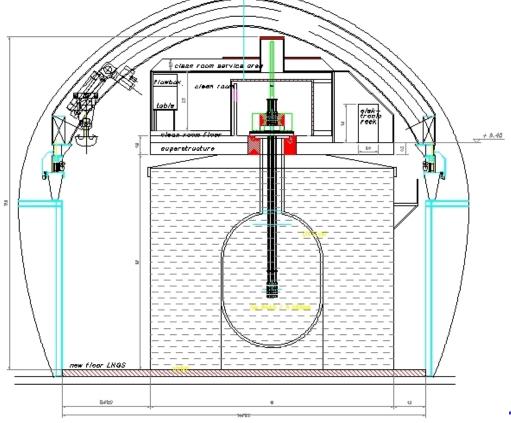
- Delay of cryostat delivery
- Constructional problems induced by presence of cryostat
- Protection of cryostat during WT construction
- Water availability to fill for cleaning and filling
- Permits to discharge water in LNGS draining pipe

Flanges on top of WT for PM cables: request from TU. Needs confirmation. It seems redundant

PIANTA LIVELLO COPERTURA (a quota + 9,70)

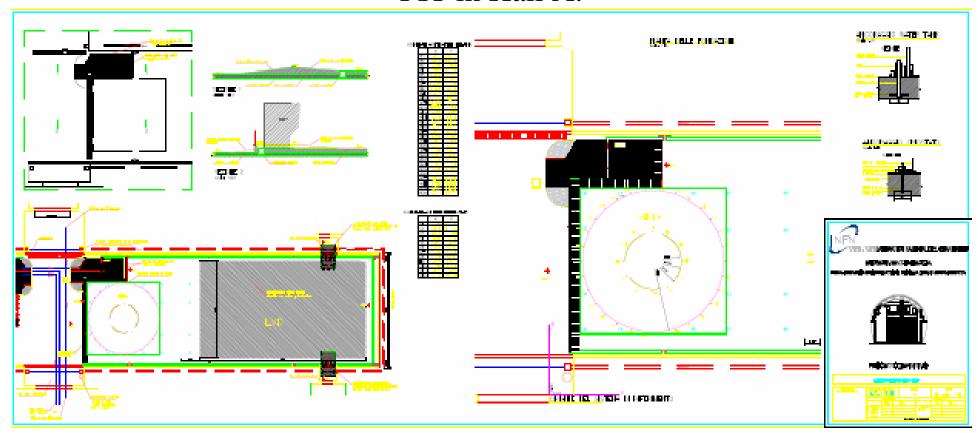
cable tray leadcables to chimneys

total of 4 flanges DN 250, 2 of DN 500

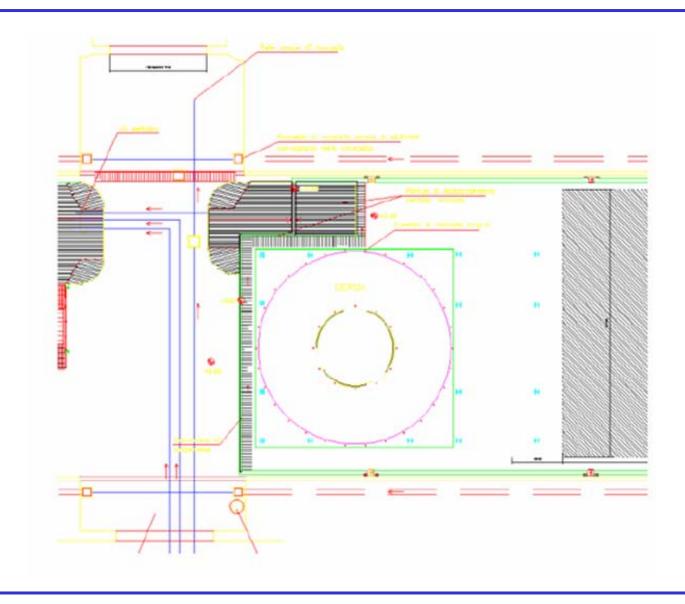

The tendering drawings

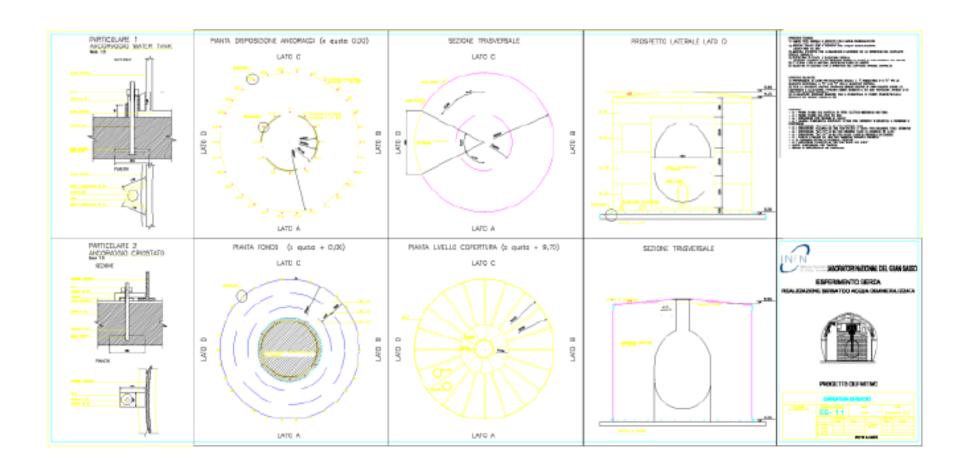
The drawings will be put in the GERDA web-page.

Is the moment to fix details: number and position of flanges for μ - veto, type of neck flange and check dimensions. Executive


project will be discussed with the company engineer starting

from end-july.




The tendering drawing and discharge of WT:

55 l/sec corresponding to 3.5 h through DN250 pipe running below TIR tunnel + 65 l/s (? depending on eventual bottlenecks) only in case of emergency towards the 300 m³ PIT in Hall A.

WT discharge pipe net

