

Update on Phase II Detectors

Iris Abt, Karlheinz Ackermann, Michael Altmann, Allen Caldwell, <u>Kevin Kröninger</u>, Bela Majorovits, Stefan Mayer, Xiang Liu, Franz Stelzer, Petra Strube

MPI für Physik, Munich

GERDA Collaboration Meeting, Heidelberg, Febr. 2006

Detector Development (I)

Detectors at hand / ordered:

- N-type crystal, closed-ended geometry, unsegmented
- P-type crystal, true coaxial geometry, unsegmented
- P-type crystal, true coaxial geometry, 6 ϕ segments
- <u>N-type crystal, true coaxial geometry, 6 ϕ x 3 z segments</u>
- (P-type crystal, true coaxial geometry, $6 \phi \times 3 z$ segments)
- \rightarrow Focus on 18-fold n-type detector \rightarrow "Siegfried"
- \rightarrow Successfully tested first three crystals

Detector Development (II)

Suspension system with cabling:

- Stress tests
 ongoing at
 MPI
- Kapton vs.
 Cuflon
- Holders and cables will be mounted at
 CANBERRA

Detector Development (III) - Siegfried

Energy resolution: Plans:

• Core ~ 2.4 keV

(FWHM)

- Deliver detector to MPI Munich in march
- Segments ~ 4 keV
 - Operate in vacuum test cryostat first
 - New teststand is being build \rightarrow Bela's talk

TG 2 - Key Questions

Key questions:

- Do n-type and p-type detectors work in liquid nitrogen?
- Do n-type and p-type detectors work in liquid argon?
- Do segmented detectors work in cryoliquid?
- Are the detector properties well understood?

 \rightarrow Teststands in Munich aim to answer these questions.

Teststand: Milchkanne

Crystal

Teflon

FET

Electronics

N-type crystal with closed-ended coaxial geometry:

- 20 cooling cycles in liquid nitrogen
- 3 cooling cycles in liquid argon
- Energy resolution ~ 6 keV (FWHM) at 1.332 MeV (Co-60)
- \rightarrow No difference in energy resolution after
 - continuous cycling
- → No difference observed between nitrogen and argon as cryoliquid
- \rightarrow Robust if treated carefully (survived impurities and power glitches)

P-type crystal with true coaxial geometry:

- 7 cooling cycles in liquid nitrogen
- One cooling cycle in liquid argon
- Energy resolution ~10 keV (FWHM) at 1.332 MeV (Co-60)
- → No difference in energy resolution after continuous cycling
- → No difference observed between nitrogen and argon as cryoliquid
- \rightarrow Robust if treated carefully

P-type crystal with true coaxial geometry and 6 phi segments:

- 2 cooling cycles in liquid nitrogen
- Accident with heating liquid \rightarrow crystal sent back to DSG

Kevin Kröninger, MPI München

GERDA Collaboration Meeting

- 18-fold n-type prototype at hand
- Copper holders and cabling developed and produced at MPI
- Integration of suspension and cabling done at CANBERRA
- N-type and p-type detectors successfully operated in nitrogen
- N-type and p-type detectors successfully operated in argon
- Segmented detectors work in nitrogen
- More teststands are planned \rightarrow detector properties
 - GERDAlinchen II (MPI) / III (LNGS)
 - Galatea
- Focus on segmented detectors in nitrogen (p-type, n-type)