Motivation for development and feasibility of the depleted reference detector

Sergey Belogurov, ITEP/INR

- When reference detector is certainly not needed.
- When reference detector is certainly needed.
- Backgrounds in enriched, natural, depleted, and double depleted detectors
- Comparison of natural, depleted and double depleted reference detectors
- Feasibility issues
- Conclusions

If result of the "Phase I" is compatible with flat background, and result of the "Phase II" is also compatible – no reference detector is required!

When we observe an effect and want to determine and subtract the background.

• Weak argumentation - $2\beta 2\nu$ hinders us from determination of the background.

When we observe an effect and want to determine and subtract the background.

 Weak argumentation - 2β2ν hinders us from determination of the background.

In our case it's true only for of Co-60 and Ge-68 contents in the enriched detectors.

2 kg Ge-76 detector, 5 year measurement (thanks to X. Liu)

When we observe an effect and want to determine and subtract the background.

 Weak argumentation - 2β2v hinders us from determination of the background.
In our case it's true only for of Co-60 and Ge-68 contents in the enriched detectors.

Solution without reference detector:

Coincidence between detectors (segments) may be required for these measurements.

Pro: Using enriched detector for measurement of cosmogenic activity, one avoids uncertainties of isotope dependence of activation rates.

Contra: Statistics decreases, and uncertainties of coincidence efficiency enter into business.

2 kg Ge-76 detector, 5 year measurement (thanks to X. Liu)

When we observe an effect and want to determine and subtract the background.

Strong argumentation – decreasing activity of the most active sources, we may start to see weak and/or unknown lines (e.g. μ - capture at Cu).

The fastest way to prove that the *line* is *not* a background is to use a reference detector with different Ge-76 contents.

The bigger the difference, the better statistical validity of the proof is.

If one believes, that the *line is* background one, more advanced Ge-68 detector is preferable.

Backgrounds in enriched, natural, depleted, and double depleted detectors

For external backgrounds isotopic composition of Ge detector is not important

Isotope dependence of Co-60 production rate is weak

The only thing to care of is Ge-68

Ge, depleted from Ge-76 contains all the saturated amount of Ge-68 from Initial natural Ge

⁶⁸ Ge			
⁷⁰ Ge	281.4		
⁷² Ge	55.34		
⁷³ Ge	28.0		
⁷⁴ Ge	14.53		
⁷⁶ Ge	4.22		

Production rates (per day per kg)

00	
⁷⁰ Ge	1.73
⁷² Ge	2.88
⁷³ Ge	3.14
⁷⁴ Ge	3.35
⁷⁶ Ge	3.31

60**C**o

Germanium composition and activation rates

Ge isotope	70 (%)	72 (%)	73 (%)	74 (%)	76 (%)	⁶⁸ Ge Activation rate, at/kg/d
enriched	0.015	0.075	0.165	12.5	87.25	5.6
natural	20.54	27.4	7.76	36.54	7.76	80.6
depleted	22	30	8.5	38.5	≤ 1	86.4
Double depleted	~2	38	11	48	≤ 1	37

Storage at ECP: factor ~ 30 attenuation compare to the Earth's surface

S. Belogurov ITEP / INR

S. Belogurov ITEP / INR

Feasibility Issues

- Currently depleted germanium is stored at ECP as fluoride.
- Storage at ECP: factor ~ 30 attenuation compare to the Earth's surface.
- Logical possibility of delay of reference detector (also required due to Ge-68).
- Possibility of common efforts with low background labs

(for low background gamma spectroscopy $2\beta 2\nu$ decay may became a problem even with natural detector !)

Conclusions

- Reference detector is certainly needed if the effect is observed.
- Depleted reference detectors have advantages compare to natural ones and have good prospects in gamma spectroscopy
- Depleted and even double depleted reference detector must be stored underground for few years due to Ge-68
- Logically reference detector is needed after measurements with enriched one.
- Currently there exists a possibility of procurement of the depleted material

Ir	In natural Ge (kg ⁻¹ d ⁻¹)								
		HMS-ALICE	GENIUS	Miley'92 Avignone'92			Avignone'92		
		+YIELDX			Shield	(MC)	(exp)		
	⁶⁸ Ge	77+12=89	58.4	26.5	81	29.6	$30{\pm}7$		
	⁶⁰ Co	0.3 + 4.5 = 4.8	6.6	4.8	2.9				
	⁶⁵ Zn	36+41=77	79.0	30.0		34.4	38 ± 6		
	⁵⁸ Co	0.5 + 13 = 14	16.1	4.4		5.3	$3.5 {\pm} 0.9$		
	⁵⁷ Co	0.3 + 9.4 = 9.7	10.2	0.5		4.4	$2.9{\pm}0.4$		
	54 Mn	0.01 + 7.2 = 7.2	9.1			2.7	$3.3 {\pm} 0.8$		
	⁶³ Ni	1.7 + 3.5 = 5.2	4.6						
	55 Fe	0.06+7.9=7.9	8.4						