

GERDA meeting GEEL 11-13 of June 2007

M.-C. calculations of background index for LARGE setup

Barabanov I.R., Gurentsov V.I., Kianovsky S., Kornoukhov V.N. (INR RAS, Moscow) Schoenert S. (MPIK, Heidelbeg)

Scheme of the LARGE set up geometry

Initial data

- The background index has been found for LARGE setup in the energy region of 2.029-2.039 keV.
- The calculations have been done by Valery Gurentsov Gamma Code (2G code), which directly simulate gamma rays transport to the detector through the cryostat material and LAr.
- Gammas from ²¹⁴Bi and ²⁰⁸Tl in the cryostat material were taken into account:

a) Simplified PMT form was taken for calculation with mass of 600 g with activities 208 Tl - 0.3 Bq/kg, 214 Bi - 2.0 Bq/kg;

b) Mass of steel is 151 kg, 232 Th & 214 Bi activity = 10⁻³ Bq/kg;

c) The thickness of the copper is 10 cm (including shielding) and 232 Th & 214 Bi activity = 10⁻⁵ Bq/kg;

• String consists of three crystals with L = 100 mm (D68 mm) each and a spacing of 50 mm in between (total string length: 3x100 mm + 2x50 mm = 400 mm). The mass of the Ge crystal is 2 kg.

Background index at different PMT thresholds (/keV·year·kg) <u>for location 1</u> (80 cm above bottom of cryostat) for Var I

	Without PMT signal	Threshold 0 keV	50 keV	100 keV	150 keV	200 keV
TI PMT	5.9.10-2	7.2.10-5	9.0.10-5	1.1 .10-4	1.3 . 10-4	1.4 .10-4
Bi PMT	5.6 ·10 ⁻²	1.7 ·10 ⁻⁴	6.6 ·10 ⁻⁴	6.0 ·10 ⁻³	1.4 ·10 ⁻²	3.3 ·10 ⁻²
Tl Fe	4.6 • 10-3	4.1 ·10-5	6.0 ·10 ⁻⁵	7.3 ·10 ⁻⁵	7.8 ·10 ⁻⁵	9.6 ·10 ⁻⁵
Bi Fe	6.1 ·10-4	9.1 •10-6	3.2 • 10-5	6.6 ·10 ⁻⁵	1.6 • 10-4	3.2 · 10-4
Tl Cu	6.0 ·10 ⁻³	2.6 . 10-4	4.1 ·10-4	4.2 . 10-4	4.5 . 10-4	4.8 ·10 ⁻⁴
Bi Cu	1.1 .10-3	9.8 ·10 ⁻⁵	1.6 .10-4	1.9 .10-4	3.6 .10-4	7.3 .10-4
Total	1.2 ·10 ⁻¹	5.8 ·10 ⁻⁴	1.3 ·10 ⁻³	6.7 ·10 ⁻³	1.5 ·10 ⁻²	3.5 ·10 ⁻²

Background index at different PMT thresholds (/keV·year·kg) <u>for location 3</u> (50 cm above bottom of cryostat) for Var I

	Without PMT signal	Threshold 0 keV	50 keV	100 keV	150 keV	200 keV
TI PMT	1.0.10-2	3.0. 10-5	3.0.10-5	3.0 \cdot 10^{-5}	3.0 · 10 ⁻⁵	3.0 \cdot 10^{-5}
Bi PMT	8.0 ·10 ⁻³	4.0 ·10 ⁻⁵	7.2 ·10 ⁻⁵	7.2 ·10 ⁻⁴	1.7 ·10 ⁻³	4.0 ·10 ⁻³
Tl Fe	7.6 .10-4	3.0 · 10-6	3.0.10-6	3.0.10-6	6.7·10 ⁻⁶	1.4 . 10-5
Bi Fe	1.2 . 10-4	1.7.10-6	7.3.10-6	1.6.10-5	4.2.10-5	8.2.10-5
Tl Cu	7.7.10-3	3.3 · 10-4	4.7.10-4	4.8.10-4	5.1.10-4	6.0.10-4
Bi Cu	1.2 • 10-3	8.0.10-5	1.6.10-4	2.2 • 10-4	4.0 • 10-4	7.5 .10-4
Total	2.8 ·10 ⁻²	4.1 ·10 ⁻⁴	7.1.10-4	1.4 ·10 ⁻³	2.7 ·10 ⁻³	5.5 ·10 ⁻³

The spectrum of energy deposit in Ar in coincidence with signal in detector in the neutrinoless double beta decay region of ⁷⁶Ge from ²⁰⁸Tl in PMTs

The spectrum of energy deposit in Ar in coincidence with signal in detector in the neutrinoless double beta decay region of ⁷⁶Ge from ²¹⁴Bi in PMTs

Conclusions

- 1. The main contribution is due to **PMTs** (as expected).
- 2. BI ~ 10⁻² can be achieved **if PMTs** are able to detect an energy of about 100 keV (released in LAr).
- 3. The most dangerous background is due to ²¹⁴Bi. If the threshold is >200 keV, the PMTs are useless. The energy of main ²¹⁴Bi line is 2204 keV and if it gives a signal in detector, the maximum energy deposit in Ar is about 200 keV.
- 4. The background from Cu is not negligible because:

1) Cu mass is larger than steel and PMTs.

2) the probability for gamma to lose a part of energy in material, and give a signal in detector is higher because of the essentially larger thickness of Cu.

The BI for different crystals in the string (the background from 214Bi in PMTs, Var II)

Detector	1	2	3
BI for the crystal In the string	2,1*10 ⁻¹	5,6*10-2	2,5*10-2
BI for individual crystals	2,1*10-1	7,0*10-1	2,8*10-2