

Ultra-High-Purity Copper Technology Update

Craig Aalseth Pacific Northwest National Laboratory

Topics

Copper Electroforming Status

- PNNL above-ground labs
- LANL underground work at WIPP
- Electroformed Copper Purity
 - ²³²Th Assay
 - ²²⁸Th Tracer Study
- Electron-Beam Welding
- Copper Emissivity Measurements

Copper Electroforming Status

PNNL Chemistry Prototyping Labs 101/102

- Bath chemistry
- > Waveforms
- Material property parametric studies
- Large-component cleaning & passivation

PNNL Chemistry Production Lab – 8C

- > 8 Plating Baths Constructed
 - 2 currently plating
 - 6 Prepared, currently in leaching / clean up stage
 - Some procurement / regulatory delays – now resolved
- One 12-channel programmable power supply
- Three other specialty programmable power supplies
- > N2 cover gas & sparge
- Heat exchanger for temp control
- Continuous non-contact monitoring of conductivity
- Positive pressure room / HEPA filtered air
 - Class <2000 (~1300) with some difficulty
 Majorana Update to GE June 10 - 14, 2007, IRMM, Berground

Production Copper Electroforming

- Plating for weeks without machining, Cu ~cm thick
- Plating still slower than desired, 0.002-0.005"/day
- Developing better recipes which may improve plating rate
- ²²⁸Th tracer studies will determine purity limitations vs. plating rate

Underground Electroforming Demonstration at WIPP

- LANL demonstration of underground electroforming
- Test piece of 660 grams plated in 9 days
- Supports
 - ES&H process (DOE site)
 - Test technology transfer to UG location
 - Short-lived activation products measurements
 - Plan includes controlled surface exposure, then UG counting in LANL WIPP UG measurement facility

Copper Production Summary

- Underground test setup now operational at WIPP
- R&D space now separate from production lab at PNNL – more capacity, better cleanliness
- 8 production baths now built, 2 operational
- Schedule of parts production planned for summer and fall 2007
 - GERDA test pieces are in this schedule

Electroformed Copper Purity

²³²Th Assay ²²⁸Th Tracer Study

Status of Copper Assay and Other Measurements

- Goals
 - Mass Spectrometry of ²³²Th in copper at Majorana target levels (radiochemistry + ICP-MS)
 - Continue study and control of copper electroforming process
- New Results
 - New positive measurement of ²³²Th in Cu
 - Identification (and resolution) of bath purity issue
 - Additional R&D
 - ²²⁸Th tracer study

Results from Copper Samples using Ion Exchange Sample Processing into ICP-MS

	Ave of µBq ²³² Th/kg in Blanks	µBq ²³² Th/kg of Starting Anode Cu	µBq ²³² Th/kg of Electroformed Cu
Column 1	1.0	1.7	1.6
Column 2	0.5	1.6	1.2
Column 3	0.6	1.4	0.9
Column 4	0.5	1.5	2.0
Column 5	0.5	1.8	1.5
Column 6	0.4	1.0	1.3
Column 7	0.6	1.3	0.9
Ave	0.6	1.5	1.3
Std Dev	0.2	0.2	0.4
% Std Dev	34.9	16.8	30.2

- Months of behind-thescenes work
- Values are not blank-subtracted
- Ratio between starting and electroformed copper expected to be much larger
- Led to analysis of electroforming bath solution using precipitation techniques
- Discussion on next slide!

Discussion of Results

- Calculation of method detection limit based on these data using standard t test for a 99% confidence interval (from 40 CFR 136)
 - Method detection limit = t for seven replicates * std. dev.
 = 3.18 * 0.2
 - = 0.7 µBq 232Th /kg Cu
- Tracer (²²⁹Th) yields with Cu about 2/3 blank levels possible competition even with small Cu retention – doesn't limit measurement sensitivity
- Bath contamination found at relatively high levels (77 uBq/liter)
 - IGEX method used laborious multiple CuSO₄ recrystallizations
 - This batch only used one recrystallization
 - New method eliminates this source creates CuSO₄ in situ
 - This result provides data point for Th rejection at lower concentrations will be compared to upcoming tracer study
 - Implies about a factor of 100 Th rejection in process (at these Th levels)
- Statistically significant difference seen between blank and Cu samples
 - Lowest-uncertainty result is 0.9 ± 0.4 uBq/kg (starting anode)
 - Electroformed copper sample result is 0.7 ± 0.6 uBq/kg

Summary of ²³²Th Assay

- Radiochemistry + ICP-MS for ²³²Th in Cu
 - Method sensitivity
 - 1 σ = 0.2 uBq/kg
 - 99% CL = 0.7 uBq/kg
 - Unexpected bath contamination at 77 uBq/liter found, mitigated by new bath setup procedure
 - Lowest positive measurements in UHP copper
 - 0.9 ± 0.4 uBq/kg (starting anode)
 - 0.7 ± 0.6 uBq/kg (electroformed copper)
 - Publication in preparation
 - Two more campaigns of seven-fold-replicate method planned in FY07, each 2-3 samples

²²⁸Th Tracer Study

- Goal is to study behavior of Th at atom concentrations near Majorana target purity
- High specific activity means above-ground lowbackground HPGe can measure target tracer concentrations in ~1-gram electroformed copper samples
 - Can radiometrically measure atom concentration equivalent to <0.5 uBq/kg ²³²Th
 - Expect to cover 5 or 6 orders of magnitude
- Status
 - 5 mCi ²²⁸Th source received from ORNL
 - Experimental plan developed
 - Includes plans to look at broken equilibrium, etc.
 - "Cold" experiments happening now
 - Students + HRA + dispersible source = proceed carefully

Electron-Beam Welding

Electron-Beam Welding Tests

- E-Beam Welding
 - Clean process done in vacuum
 - No additional materials
 - Very good process control
 - Used on GeMPI detectors
 - Affordable cost
 - Potentially much faster than IGEX electro-welding method
- Current tests performed
 - First work with PNNL E-Beam group
 - Established welding parameters
 - Use simple tube geometry to facilitate vacuum tests of wield
 - Sectioning and microscopy for weld penetration, crystallography studies

Majorana Update to GERDA June 10 - 14, 2007, IRMM, Belgium

Copper Emissivity Measurements

Copper Emissivity Measurements

- Goals
 - Control emissivity of clean copper surfaces
 - Demonstrate practicality of using floating copper shield to reduce heat loads
- Method
 - Borrow "cryogenic test setup" from another project
 - Clean and passivate copper lining and floating shield, measure cryogenic power load

DITEC

Dewar and part of floating IR shield

RTDs: 1000 ohm Pt, DIN class B (0.1%)

Las and

- 4-wire readout to avoid systematic offsets
- Logging with PCI card in PC
- Mass data logged via serial bus

Mounting RTDs to dewar

Lining lid of chamber

Copper Surface Preparation

- Goal: Low emissivity
- Highly polished copper : ϵ ~2-3%
- Oxidized copper : ε ~10-80%
- Most copper cleaned and passivated with previously established method, Hoppe et al.*
 - Acidified peroxide etch $(3\% H_2O_2, 1\% H_2SO_4)$
 - Citric acid passivation (~1%)
- Small amount of copper foil only passivated with more concentrated (5%) citric acid due to time constraints

*Nucl. Instr. Meth. **A**, in press (2007)

Cryogenic Test System: Measured temperatures

Outer wall: T=293K

Floating IR shield: T=233K

> Dewar: T=83K

Temperature measurements 8 liters of LN

(data taken with incomplete IR shield - no coverage at bottom)

Cooling Power

Final configuration of cryogenic test assembly

- Power calculated from LN boiloff rate
- Gradual power reduction understood: result of slow heat extraction from materials (SS, Cu) in the floating shield
- Required about half the cooling power of nonshield design

Emissivity Measurements

 Use LN boiloff rate, material properties, and the following equations to extract emissivity:

$$P_{total} = P_{rad} + P_{con}; \quad P_{con} = \frac{kA\Delta T}{d}; \quad P_{rad} = \frac{\sigma(T_1^4 - T_2^4)A_1}{\frac{1}{\varepsilon_1} + (\frac{1}{\varepsilon_2} - 1)\frac{A_1}{A_2}}$$

- Conductive heat load = ~1.4 Watts, radiative heat load ~2.7 Watts
- Hoppe passivated copper: ε=2.5(2)%
 - Consistent with earlier, small scale measurements
 - Passivation technique produces consistent results
 - As good as highly-polished copper and almost as good as gold
- "Other" passivated copper: ε=3.7(4)%

Copper Emissivity Summary

- Goals
 - Control emissivity of clean copper surfaces
 - Demonstrate practicality of using floating copper shield to reduce heat loads
- Emissivity
 - Demonstrated emissivity of 2.5% is excellent result even when compared to gold
 - Small scale and large scale measurements agree
- Floating shield
 - Reduced heat load in cryogenic test assembly by about a factor of two, consistent with modeling

Summary

- Copper Electroforming Status
 - PNNL above-ground labs
 - Increased capacity
 - LANL underground work at WIPP
 - First test piece electroformed underground
- Electroformed Copper Purity
 - ²³²Th Assay
 - New method sensitivity 0.7 uBq/kg (90% CL)
 - ²²⁸Th Tracer Study
- Electron-Beam Welding
- Copper Emissivity Measurements
 - Passivation providing stable surface at 2.5% emissivity "good as gold"