Purification of N₂ and Ar

Hardy Simgen, MPIK Heidelberg

Outline

Requirements
 Gas purification by adsorption
 N₂ purification
 Ar purification
 Techniques for analysis
 Summary

Production

N₂, Ar are produced from air by rectification

Traces of atmospheric noble gases remain in final product

Final purity depends on individual plant

Radioactive noble gas nuclides in the air

	Sources	Activity concentration (STP)
⁴² Ar	cosmogenic	0.5 μBq/m³ air 50 μBq/m³ Ar
³⁹ Ar	cosmogenic	17 mBq/m ³ air 1.8 Bq/m ³ Ar
⁸⁵ Kr	²³⁵ U fission (nuclear fuel reprocessing plants)	1.4 Bq/m ³ air 1.2 MBq/m ³ Kr
²²² Rn	Primordial ²³⁸ U	10 to >100 Bq/m ³ air

Requirements

²²²Rn: MC simulations [Baudis 2002]: 0.5 μBq/m³ N₂ (STP) = 6·10⁻⁵ events/(kg·y·keV) BOREXINO has achieved this goal

42Ar:

- MC simulations [Schönert]:
- 50 μBq/m³ N₂ (STP) = 4·10⁻⁵ events/(kg·y·keV)
 42Ar naturally low enough

Requirements

Q-value of ³⁹Ar and ⁸⁵Kr below 700 keV:

 But dead-time problem when Ar scintillation is used (slow decay time: 1 μs)

▲ Assume 30 m³ active volume
 • ³⁹Ar rate: 50 kHz
 • ⁸⁵Kr rate not higher ⇒ ≤1 ppm krypton required

Gas purification by adsorption

Applied when highest purities are required Based on different binding energies Pore size distribution is crucial Activated carbon suited for most applications

Henrys Law n = H - p

n = number of moles adsorbed [mol/kg]
 p = partial pressure of Kr [Pa]
 H = Henry coefficient [mol/(kg·Pa)]

valid for low partial pressures

Single component adsorption model for H

S. Maurer, Ph.D. thesis, TU München (2000)
Adsorption on activated carbon
based on van-der-Waals equation
simple empirical formula derived:

$$H\left[\frac{\text{mol}}{\text{kg} \cdot \text{Pa}}\right] = \exp\left\{\left(-0.05 + \frac{81}{T[\text{K}]}\right) \cdot \frac{T_C[\text{K}]}{\sqrt{P_C[\text{bar}]}} - 17.5\right\}$$

Single component adsorption model for H

Gas	T _C	P _C	$T_{C} \cdot P_{C}^{-0.5}$	H [mol/(kg·Pa)]
Gas	[K]	[bar]	[K·bar ^{-0.5}]	@ 77 Kelvin
Ar	151	49	21.6	2E+2
N ₂	126	34	21.6	2E+2
Kr	209	55	28.2	2E+5
Rn	377	63	47.6	1E+14

N₂ purification

Lots of know-how at MPI-K (BOREXINO) Removal of Ar not possible by adsorption Rn purification possible but problem with ²²²Rn emanation Highly pure synthetic carbon "Carbo Act"

²²²Rn emanation <0.3 mBq/kg

N₂ purification

-11 EEEE 111 ²²²Rn <0.3 μBq/m³ N₂

Purification of N₂ from Kr

Single component adsorption model fails for binary system N₂/Kr

"Competition" between N₂ and Kr for available adsorption sites

Henry coefficient for Kr adsorption drops from ~10² to ~10⁻⁴ when N₂ is present

H and pore sizes

Hardy Simgen, $\beta\beta$ -meeting, 26. + 27.1.04

Pore size distributions

Purification of N₂ from Kr

Further improvment by gas phase adsorption at low temperatures

Pores and gas phase lead to H ~1 mol/kg/Pa

More than 500 m³ of N₂ (STP) can be purified with ~1 kg of adsorber (V=H·R·T·m)

Purification of N₂ - Summary -

Rn removal no problem

Ar removal impossible

Kr removal technically feasible but requires
 low temperature gas phase adsorption
 Pore size-tuned carbon adsorbers

Single component adsorption model for H

Gas	T _C	P _C	$T_{C} \cdot P_{C}^{-0.5}$	H [mol/(kg·Pa)]
Gas	[K]	[bar]	[K·bar ^{-0.5}]	@ 77 Kelvin
Ar	151	49	21.6	2E+2
N ₂	126	34	21.6	2E+2
Kr	209	55	28.2	2E+5
Rn	377	63	47.6	1E+14

Purification of Ar

(Almost) no difference between Ar and N₂ for adsorption on activated carbon

• However $T(LAr) = T(LN_2) + 10K$

Rn removal no problem

Kr removal for Ar even more challenging than for N₂ (especially for large amounts)

Techniques for analysis - Nitrogen -

Rn, Ar, Kr analysis in N₂ performed at MPI-K within BOREXINO

Rn ↔ low background proportional counters
 Detection limit: 30 μBq

Ar, Kr ↔ noble gas mass spectrometer
 Detection limits: 1 ppb for Ar
 0.1 ppt for Kr

Noble gas purification line

Hardy Simgen, $\beta\beta$ -meeting, 26. + 27.1.04

Page 21

Noble gas purification line

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Page 22

Mobile Radon Extraction Unit (MoREx)

Hardy Simgen, $\beta\beta$ -meeting, 26. + 27.1.04

Page 23

Mass spectrometer

Techniques for analysis - Argon -

Rn analysis in the same way as for N₂
 Same sensitivity can be achieved

Kr analysis difficult (contamination of mass spectrometer with Ar)

 Requires separation of Ar, Kr in advance (gas chromatography)

Still some work to do…

Which N₂ is on the market?

	Company	Ar [ppm]	Kr [ppt]	²²² Rn [μBq/m ³]
	Air Liquide (4.0)	10	40	~50
	Linde (7.0)	0.06	0.3	?
	SOL (6.0)	0.005	0.04	?
V	Vestfalen AG (6.0)	0.0005	0.06	?

Which Ar is on the market?

Ar 6.0 means ∑(Contaminants) < 1 ppm
 But noble gases are not included
 N₂, Ar produced in a similar way (rectification)

Reasonable to assume that Kr < 1ppm in Ar can be found on the market

Has to be proven \Rightarrow Technique for analysis

Summary

²²²Rn requirements similar to BOREXINO
 Kr requirement in Ar ~1ppm

Adsorption techniques good for highest purities

Rn in N₂ well under control
 purification as well as analysis

Will also work for Rn in Ar

Summary

Purification of Ar from Kr not trivial Recently shown at MPI-K: • Purification of N₂ from Kr by adsorption is possible Requires gas phase and special adsorbers Ar purification in the same way, but higher T (10 K) \blacksquare Easiest approach: Buy pure enough N₂, Ar To do: Development of technique for measuring 1 ppm Kr in Ar