Comparison of a new Ge-76 experiment with previous and ongoing experiments

Attempt of an Overview

Stefan Schoenert, MPIK Meeting about new Ge-76 experiment at LNGS, Feb 26-27, 2004

Experimental situation in the search for 0v-DBD Summary of the most sensitive experiments until beginning of 2003

Experiment	Isotope	τ _{1/2} ⁰ ν (y)	m* _{ee} (eV)	Range m _{ee}
Heidelberg – Moscow 2001	7660	> 1.9 × 10 ²⁵	< 0.35	< 0.3 - 2.5
IGEX 2002	00	> 1.57 × 10 ²⁵	< 0.38	< 0.3 - 2.5
Mi DBD – v 2002	¹³⁰ Te	> 2.1 × 10 ²³	< 1.5	< 0.9 - 2.1
Bernatowicz et al. 1993 (GEO)	¹²⁸ Te ^{geo}	> 7.7 × 10 ²⁴	< 1.0	< 1.0 - 4.4
Belli et al. 2003	¹³⁶ Xe	> 1.2 × 10 ²⁴	< 1.0	< 0.8 - 2.4
Bizzeti et al. 2003	¹¹⁶ Cd	> 1.7 × 10 ²³	< 1.7	< 1.6 – 5.5
Ejiri et al. 2001	¹⁰⁰ Mo	> 5.5 × 10 ²²	< 4.8	< 1.4 - 256
Osawa I. et al. 2002	⁴⁸ Ca	> 1.8 × 10 ²²	< 6.0	
	∦ * Staudt, Mι	uto, Klapdor-Kleingrot	haus Europh. Le	ett 13 (1990) 31
claimed evidence Joint and	alysis:	$\tau_{1/2}^{0v} > 2.5 \times 10^{10}$	²⁵ y; m _{ee} < 0	.30 eV
Yu. Zdezen	ko et al.			

(A. Giuliani, Taup03)

Presently running experiments

CUORICINO (Cryogenic Underground Observatory for Rare Events):Firenze, Gran Sasso, Insubria, LBNL, Leiden, Milano, Neuchatel, South Carolina, ZaragozaLocation: Gran Sasso Underground LaboratorySource = detector, TeO2 (40 kg) \Rightarrow ¹³⁰Te (13 kg):Q = 2530 keV

NEMO3 (Neutrino Ettore Majorana Observatory): CENBG Bordeaux, Charles Univ. Prague, FNSPE Prague, INEEL, IReS Strasbourg, ITEP Moscow, JINR Dubna, Jyvaskyla Univ., LAL Orsay, LPC Caen, LSCE Gif, Mount Holyoke College, Saga Univ, UCL London

Location: Frejus Underground Laboratory

Source \neq detector \Rightarrow study of different nuclei; main target ¹⁰⁰Mo (6.9 kg): Q = 3034 keV

NEMO3

• Source in form of foils:

Isotope	Study	Mass(g)
100 Mo	$\beta\beta0 u,\beta\beta2 u$	6914
^{82}Se	$\beta\beta0 u,\beta\beta2 u$	932
^{116}Cd	$\beta\beta0 u,\beta\beta2 u$	405
130 Te	$\beta\beta0 u,\beta\beta2 u$	454
¹⁵⁰ Nd	$\beta\beta 2\nu$	36.6
⁹⁶ Zr	$\beta\beta 2\nu$	9.4
^{48}Ca	$\beta\beta 2\nu$	7.0

- Tracking volume with Geiger cells
- e⁺/e⁻ separation by magnetic field
- Plastic scintillators for calorimetry and timing

Start data taking February 2003

CALORIMETER

NEMO3

$$\begin{split} t_{1/2}^{2\nu}(y) &= 7.8 \pm 0.09_{stat} \pm 0.8_{syst} \times 10^{18} \text{ y} \\ t_{1/2}^{0\nu}(y) &> 6 \times 10^{22} \text{ y} \\ m_{ee} &< 1.8 - 2.9 \text{ eV} \end{split} \qquad \begin{aligned} &\text{Expected final sensitivity} \\ t_{1/2}^{0\nu}(y) &> 5 \times 10^{24} \text{ y} \\ 0.2 - 0.4 \text{ eV} (6.9 \text{ kg}) \end{aligned}$$

(C. Augier, ECT Trento, 2003)

Future of "à la NEMO"

NEMO3, Phase-2: 10 kg of ⁸²Se or even better: 10 kg of ¹⁵⁰Nd D.O.E. starts purification of Se and Nd (INEEL, Idaho Falls, USA) 10 kg ¹⁵⁰Nd, 5 years of data: <m_v> < 0.06 – 0.3 eV</p>

<u>Next step would be 100 kg enriched source: ¹⁰⁰Mo</u> (or ⁸²Se or ¹⁵⁰Nd)

Background rejection:

NEMO3 after 1 year of data will validate ²⁰⁸Tl and ²¹⁴Bi purification processes and neutron rejection at the level required for 100 kg of ¹⁰⁰Mo

Need to improve Energy Resolution to separate $\beta\beta0\nu$ and $\beta\beta2\nu$

We need FWHM ~ $8\%/\sqrt{E}$ (MeV) (instead of 14% for NEMO-3)

in order to have ~ 1 event/year of $\beta\beta2\nu$ in the $\beta\beta0\nu$ energy window (like for NEMO3)

How to improve $\Delta E/E$?

- calorimeter: Silicium (e⁻) + small scintillator (γ) ?
- Modular source: bkg rejection + energy loss improvement

Need to increase the $\beta\beta0\nu$ efficiency

Energy resolution Geometrical acceptance Energy loss of electrons

(C. Augier, ECT 2003)

CUORICINO

Start data taking february 2003 Energy resolution: 7 keV FWHM TeO2 (40 kg) \Rightarrow 130Te (13 kg):

Q = 2530 keV

(A. Giuliani, Taup03)

CUORICINO: first results

3 y sensitivity (with present performance): 1×10^{25} y \Rightarrow m_{ee} < 0.13 – 0.31 eV

(A. Giuliani, Taup03)

$Cuoricino \Rightarrow Cuore$

CUORE = closely packed array of 1000 detectors 25 towers - 10 modules/tower - 4 detector/module M = 790 kg

Each tower is a CUORICINOlike detector

Expected final sensitivity: If b = 0.01 counts/(keV kg y) If b = 0.001 counts/(keV kg y)

 $m_{ee} < 28 - 68 \text{ meV}$ $m_{ee} < 16 - 38 \text{ meV}$ (A. Giuliani, Taup03)

Detector

MAJORANA PROJECT

Dubna, ITEP, JINR, New Mexico State, Pacific Northwest Natl Lab, South Carolina, TUNL, University of Washington

210 enriched (84%) Ge detectors, 2.4 kg each: total mass = 500 kg (420 kg 76 Ge)

Long project: ~ 10 years of R&D and construction + 10 years of data tacking

Cosmogenic activity (⁶⁸Ge and ⁶⁰Co) was the limiting bkg for IGEX

- → IGEX without Pulse Shape Discri.: 0.2 counts/keV/kg/y
- Fabrication of detectors at an underground facility ⁶⁸Ge decay ($T_{1/2}$ =271 days) : Reduction Factor = 10 ⁶⁰Co decay ($T_{1/2}$ =5.7 years) : Reduction Factor = 2
- New Pulse Shape Discrimination (PNNL/USC) Demonstrated Reduction Factor = 3.8
- Detectors Segmentation 6-axial + 2-azimuthal

Monte-Carlo Reduction Factor = 7.2

Total expected background at 2039 keV in the energy window 3.57 keV $(2.8 \sigma) = 6.5$ events

→ 1.1 10⁻³ counts/FWHM/kg/y

Expected sensitivity: efficiency = 73% FWHM = 3 keV $T^{0v} = 4.0 \ 10^{27} y$ $< m_v > = 0.02 - 0.07 eV$

(C. Augier, ECT Trento 2003)

EXO (¹³⁶Xe) : Enriched Xenon Observatory *Phys. Lett.*, *B480*, *12* (2000)

Univ. of Alabama, Caltech, IBM Almaden, UC Irvine, ITEP Moscow, Neuchatel, Stanford, Torino, Trieste

Up to 10 tons of 80% enriched ¹³⁶Xe Detect the ¹³⁶Ba⁺ daughter ion correlated with the $\beta\beta$ decay (¹³⁶Xe \rightarrow ¹³⁶Ba⁺⁺ e⁻ e⁻) using optical spectroscopy (Moe, Phys. Rev. C44, 931, 1991)

Mass (ton)	Enrich . (%)	Eff. (%)	Measur. Time (yr)	Background	T _{1/2} (0ν)	<m<sub>√> (eV)</m<sub>
1	80	70	5	0 + 1.8 events	8.3 10 ²⁶	0.05 – 0.13
10	80	70	10	0 + 5.5 events	1.3 10 ²⁸	0.012 – 0.032

Expected sensitivity:

Latest publication from H.V. Klapdor-Kleingrothaus' group

Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in ⁷⁶Ge), for the period November 1990–May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).

•m_{ee} = 0.1-0.9 eV •best fit 0.44 eV

Spectrum without fit as published

Not an analysis – just for illustration!

Fit with
Fixed energy scale
Fixed Bi-214 ratios from measurement (summing included)
2030 keV inserted ad hoc

⇒ Peak at $Q_{\beta\beta}$ ⇒ Problems with Bi-214 spectrum as explanation of residual spectrum

⁷⁶Ge: sensitivity, exposure and background

HEIDELBERG-MOSCOW Collaboration, Eur. Phys. J. A 12 (2001) 147: $M \cdot T = 35.5 \text{ kg y}, b = 6 \cdot 10^{-2} \text{ (kg y keV)},$ $\Delta E \sim 4.2 \text{ keV}$

Sensitivity (with bgd): $m_{ee} \propto$ (b ΔE / M T)^{1/4}

Range of m_{ee} derived from oscillation experiments

 \Rightarrow hierarchy, absolute mass scale, Majorana CP phases α,β

Let's assume it's $0\nu\beta\beta$

What would Couricino observe:
 – Couricino: 6-30 /year; bgd ~ 60 per year

• NEMO3:

- 10 - 50 / year; bgd ?

Some remarks for discussion

If analysis of new Klapdor-Kleingrothaus et al. paper holds (careful check needed):

- 1. clear goal for new Ge-76 initiative (phase 1): falsify claim or confirm with improved significance
- 2. CUORICINO and/or NEMO3 will not be able to falsify claim because of matrix element uncertainties
- 3. However, conceivable that CUORICINO or NEMO observes signal prior to start-up of new Ge-76 experiment