Summary of TG1 (joint session with TG2,10)

- Characterization measurements and status of KI detectors @ LNGS
 - part 1:(K. Gusev)
 - part 2:(M. Shirchenkov)
- Empirical reconstruction of background index of the HdM exp. with radioactive sources (O. Chkvorets)
- Data taking with Padova flash-adc system (E. Farnea -> Carla's report)
- Detector support/contact design, underground detector lab.installation, LArGe system, (S. Schoenert)
- LArGe-ino setup @ MPIK: measurement and results (P. Peiffer)
- MaGe physics validation and simulation of liquid argon test stand (D. Franco)

Characterization of KI detectors

November, 2004, in LENS barrack (prior to barrack refurbishment)

Tests done:

- Resolution
- Stability
- Deadlayer
- Summation peak analysis
- Flash-ADC data taking

Detectors moved to LUNA - I

	Detector 1	Detector 2	Detector 3	Detector 4	Detector 5			
Full mass, kG	0.98	2.906	2.446	2.4	2.781			
Depletion voltage, V		3000	3200	2900	1900			
Bias voltage, V (recommended)	4000	4000	4000	3500	2500			
FWHM, keV at 1332 keV (specifications)		1.98	1.91	1.97	2.06			
FWHM, keV at full HdMo Set-up	2.22	2.43	2.71	2.14	2.55			
Test at February 2005								
FWHM, keV at 1332 keV	2.7	2.27	2.53	2.35	2.75			
New measurements								
Bias voltage, V	3700	4000	4000	3500	2500			
FWHM, keV at 1332 keV	2.88	2.5	3.0	2.76	3.05			

Summary KI detector status

- All detectors are prepared for work, all crystals are good but their spectrometric performance are not ideal (especially for detectors 1, 3 and 5)
- Next steps: (for achieving the best performance of KI detectors)
 - Good measurement conditions -> LArGe barrack;
 - determination of various detector parameters (V-I characteristics);
 - Precision pulse generator;
 - Devices for pump and heat processes.
- Make all available procedures before refurbishment

Summation peak analysis

- Measurement of Bi-214 summation spectrum with ANG3
- Intensities of summation lines for different source position
- Conclusion: Good news: dominant Ra-226 (Bi-214) bgd is located at about 5 cm away from the detector – not on detector surface!

Specifications for new detector support and contacts

- Low-mass (⇒bgd index <10⁻² /(keV kg y))
- Use only screened materials with known radioimpurities (NOSV copper, PTFE, Silicon)
- Meets specific Ortec-type of contact (bottom of borehole)
- Mount and test each crystal individually
- Simple connection to string
- Dimensions according to Iris' specs of suspension system (cables some worrisome)

List of parts and masses

List of parts and masses

pos-nr.	Name	Anmerkung	MATERIAL	GEWICHT	Y	Х	St.
1	Ge-Kristall 2	Z.Nr: 116001-039 Variante 2	Ge	2790g	0	0	1
2	Druckstueck 1	Z.Nr: 116001-080	PTFE	0.13g	73	0	1
3	Fuehrung 1	Z.Nr: 116001-078	PTFE	0.9g	63	0	1
4	Teller	Z.Nr: 116001-077 Variante 2	PTFE	4g	44	0	1
5	Si Feder	Z.Nr: 116001-082	Si	0.3g	69	0	1
6	Kontakt 1	Z.Nr: 116001-087	Cu	2.15g	-55	0	1
7	Gewindestift 1	Z.Nr: 116001-083	Cu	2g	-72	0	1
8	Stern 1 Variante 2	Z.Nr: 116001-075 Variante 2	Cu	29g	61	0	1
9	Streife 1 Variante 2	Z.Nr: 116001-092	Cu	3.9g	-2	46	3
10	Si Stift Variante 2	Z.Nr: 116001-081 Variante 2	Si	4.2g	0	0	1
11	Isolator 3	Z.Nr: 116001-098	PTFE	1.2g	-60	0	1
12	Druckstueck 2	Z.Nr: 116001-099	Cu	1.2g	-66	0	1
13	Isolator 1	Z.Nr: 116001-111	PTFE	0.15g	64	0	1
14	Stern 2	Z.Nr: 116001-132	Cu	26.5g	-67	0	1
15	Spezialmutter 3	Z.Nr: 116001-133	Cu	6.75g	80	0]
16	Spezialmutter 2	Z.Nr: 116001-134	Cu	1.7g	72	0	1
17	Spezialmutter 1	Z.Nr: 116001-088	Cu	1.5g	75	0	1
18	Leitung 1	116001-Leitung 1	Cu	3.3g	58	30	1
19	Leitung 2	116001-Leitung 2	Cu	2.8g	87	17	1

String configuration

Analysis of bkgd contributions from support structure

MaGe Geant4 MC: probabilities per decay to deposit energy at $Q_{\beta\beta}$ in 1 keV energy bin

Next steps

- Construction of mechanical mockup (ongoing)
- Test with (non-HP) Ge crystal (thermal and electrical)
- Prototype with non-enriched HP diode (only DSG and Canberra type available!)
- Extensive testing/characterization
- Ready for starting refurbishment of enriched detectors

LArGe Facility @ LNGS Underground laboratory for detector refurbishment and testing of phase-I detectors Washstand with high-purity water supply

Fume hood with charcoal filter and vent

(June 05)

Mounting of LArGe shield

2400 mm

Copper & lead: < 20 μ Bq/kg (Th-228)

measurements in III

Aim of the measurements:

- Experimental demonstration of the new concept
- Determination of relevant parameters
- 168 g and 2 kg p-type HPGe diode
- shielding: u/g lab (15 mwe) + 5 cm Pb
- light detection with wave-length-shifter (WLS) and PMT (ETL 9357KFLB) calibration of PMT: UV-LED on optical fibre
- LAr active volume: R = 10 cm, h = 43 cm filling-level: array of Pt100 temperature sensors
- complex system because of PMT: rather long exposure to ambient air during mounting; when unmounting, crystal at LAr T exposed to room T ⇒ condensation of water (and CO2?) possible

LArGe-ino test stand @ MDIK

Comparision MC/measured data

Source: ⁵⁴Mn, single- γ -line, E_{γ} = 835 keV

⁵⁴Mn-spectrum without suppression

- with LAr-scintillation-veto
- energy-threshold: 20-40 keV

Suppression factor limited by:

- escape-events (R = 10 cm)
- dead layer of the diode (R = 1 m)

measurements in III: Co-60

quantitative comparison between

MaGe and measurements in III

definition:	Psurv	line (keV)	mc (%)	real (%)	real/mc
survival probability =	🔸 Cs 137	662	100,1 ± 0,5	85,2 ±0,7	0,85
nb of Ge evts after LAr veto	Co 60	1173	27,7 ± 0,2	$\textbf{29,0} \pm \textbf{0,5}$	1,05
raw nb of Ge evts		1333	$\textbf{25,7} \pm \textbf{0,2}$	$\textbf{28,6} \pm \textbf{0,4}$	1,11
		summ	100,0 \pm 6,4	$108,9 \pm 11,0$	1,09
\Rightarrow the lower the better					
	Bi-214	609	$\textbf{24,9} \pm \textbf{0,3}$	$\textbf{27,1} \pm \textbf{0,6}$	1,09
		1120	17,7 ± 0,5	$\textbf{21,3} \pm \textbf{1,2}$	1,21
		1764	92,6 ± 1,2	$\textbf{76,8} \pm \textbf{2,6}$	0,83

calculated in flat region around	ROI	mc (%)		real (%)		real/mc
2038 keV	Co-60	23	2	31	2	0,76
	Ra-226	48	5	27	5	1,78

quantitative comparison between MaGe and measurements in LL-Lab

definition: NB.: Detector high				n leakage current; not fully depleted							
1	peak effic	eiency									
nb of (= Ge evts ir	n given peak			peak ratios	li (ke	ne eV)	mc	real	real/ mc	
nbo	of desinte	egrations									
/					Co 6	60 1 ⁷	173	1,08	1,07	1,01	
	lino					1:	333	1,00	1,00	1,00	
peak eff	(keV)	mc (%)	real (%)	real/mc		su	mm	0,005	0,005	1,02	
Cs 137	662	0,606 ± 0,003	0,678 ± 0,004	1,12	Bi-2	14 6	09	1,00	1,00	1,00	
Co 60	1173	0,507 ± 0,002	0,493 ±0,005	0,97		1	120	0,24	0,25	0,94	
	1333	0,471 ±0,002	$\textbf{0,}\textbf{460} \pm \textbf{0,}\textbf{004}$	0,98		17	764	0,19	0,18	1,04	
	summ	$0{,}002\pm0{,}001$	$0,002\pm0,001$	0,96							
Bi-214	609	$\textbf{0,327} \pm \textbf{0,002}$	$\textbf{0,242}\pm\textbf{0,004}$	0,74	neak /	line	r r	nc	real		
	1120	$\textbf{0,077} \pm \textbf{0,001}$	$0,062\pm0,002$	0,80	compton	(keV)	(k	eV)	(keV)	real/mc	
	1764	$0,063 \pm 0,001$	0,044 ± 0,001	0,70	Cs 137	662	1	23	94	1,3	
					Co 60	1173	1	20	95	1,3	
						1333	1	11	88	1.3	