vMSM: predictions for neutrino mass and $0\nu\beta\beta$ -decay hep-ph/0505247

F. Bezrukov¹ M. Shaposhnikov²

¹Institute for Nuclear Research, Moscow, Russia

²EPFL, Lausanne, Switzerland

GERDA collaboration meeting, June 27-29, 2005

F. Bezrukov, M. Shaposhnikov (INR&EPFL) vMSM: neutrino mass and 0vββ-decay

GERDA 2005 1 / 19

Outline

Outline

Motivation

- Standard Model
- Neutrino Oscillations
- Dark Matter
- Baryon Asymmetry

2 The Model

- Lagrangian
- Dark Matter Constraints
- Baryon Asymmetry Constraints

Predictions

- v masses
- 0νββ decay Majorana mass
- Light Sterile Neutrino

Standard Model—Success and Problems

 γ, W^{\pm}, Z, g

three matter generations: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM})
 - Baryon asymmetry
 - Dark energy (Ω_Λ) Inflation Gravity

vMSM explains this and does not explain this

Standard Model—Success and Problems

 γ, W^{\pm}, Z, g

three matter generations:
$$L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$$
, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM})
 - Baryon asymmetry
 - Dark energy (Ω_Λ) Inflation Gravity

~vMSM explains this and does not explain this

Standard Model—Success and Problems

 γ, W^{\pm}, Z, g

three matter generations:
$$L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$$
, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe

Neutrino oscillations

Δm_{21}^2	$7.9^{+0.6}_{-0.5} imes 10^{-5} \ { m eV}^2$
	Solar v [SNO,Kamland]
$\tan^2 \theta_{12}$	$0.40^{+0.10}_{-0.07}$
	For $\theta_{13} = 0$
$ \Delta m_{32}^2 $	$2.0^{+0.6}_{-0.4} imes 10^{-3}~{ m eV}^2$
	Atmospheric v [SuperK]
$\sin^2 2\theta_{23}$	> 0.95
	For $ heta_{13}{=}0$ [SuperK]
$\sin^2 \theta_{13}$	< 0.016

Dark Matter

• Universe is flat ($\Omega_{tot} = 1$) and contains now

- $\blacktriangleright ~\Omega_{\Lambda} \sim 0.73$
- $\Omega_{DM} \sim 0.22$ sterile neutrino from vMSM as WDM
- Ω_b ~ 0.05
- v as "Warm" Dark Matter:
 - 2 keV < m < 5 keV</p>
 - Weak coupling never in thermal equilibrium
 - Nearly stable T_{life} > T_{Universe}

Dolgov, Hansen 2000; Hansen et.al 2001; Shi, Fuller 1998; Abazajian, Fuller, Patel 2001

▲ 글 ▶ ★ 글 ▶ 글|님

Dark Matter

- Universe is flat ($\Omega_{tot} = 1$) and contains now
 - $\blacktriangleright \ \Omega_{\Lambda} \sim 0.73$
 - $\Omega_{DM} \sim 0.22$ sterile neutrino from vMSM as WDM
 - Ω_b ~ 0.05
- v as "Warm" Dark Matter:
 - 2 keV < m < 5 keV</p>
 - Weak coupling never in thermal equilibrium
 - Nearly stable T_{life} > T_{Universe}

Dolgov, Hansen 2000; Hansen et.al 2001; Shi, Fuller 1998; Abazajian, Fuller, Patel 2001

Baryon Asymmetry

- There are matter in the Universe and no antimatter
- Ratio of number of baryons to entropy (or to photon number $s = 7.04 n_{\gamma}$)

$$\frac{n_B}{s} \simeq (8.8 \div 9.8) \times 10^{-11}$$

- Needed process
 - not in thermal equilibrium
 - CP violating
 - baryon number violating

▶ < ∃ ▶ ∃|=</p>

vMSM

Standard Model with addition of \mathcal{N} right-handed SU(2)×U(1) singlet neutrinos N_I ($I = 1, ..., \mathcal{N}$) ($\mathcal{N} = 3$ in most cases)

$$\mathscr{L} = \overline{N}_{l} i \partial N_{l} - f_{l\alpha} H \overline{N}_{l} L_{\alpha} - \frac{M_{l}}{2} \overline{N}_{l}^{c} N_{l} + h.c.$$

Dirac mass ($M^{D} = f \langle H \rangle$) Majorana mass

H — Higgs doublet L_{α} — left lepton doublet, $\alpha = e, \mu, \tau$

Gauge-invariant and renormalizable

hep-ph/0503065, T.Asaka, S.Blanchet, M.Shaposhnikov

F. Bezrukov, M. Shaposhnikov (INR&EPFL) vMSM: neutrino mass and $0v\beta\beta$ -decay

< ≥ > < ≥ > -≥ = GERDA 2005 7/19

Model parameters

In addition to the Standard Model

 $\mathcal{N} = 3$ sterile neutrinos — 18 parameters

- 3 Majorana masses M_l
- 3 Dirac masses
 6 mixing angles
 6 CP-phases

v masses and mixings

 $M_l \gg M^D$ — seesaw mechanism: 3 heavy neutrinos M_l Light neutrino mass matrix:

$$M^{v} = (M^{D})^{T} M_{I}^{-1} M^{D}$$
$$U^{T} M^{v} U = \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix}$$

Mixings: flavor state $v_{\alpha} = U_{\alpha i} v_i + \Theta_{\alpha I} N_I^c$

$$\Theta_{\alpha I} = \frac{(M^D)_{\alpha I}^{\dagger}}{M_I} \ll 1$$

F. Bezrukov, M. Shaposhnikov (INR&EPFL) vMSM: neutrino mass and 0vββ-decay

Dark Matter constraints on vMSM

and dark matter neutrinos has masses in the range

 $2 \text{ keV} \lesssim M_l \lesssim 5 \text{ keV}$

Stable within the Universe age

$$\tau_{N_1} = 5 \times 10^{26} \text{sec} \left(\frac{M_1}{1 \text{ keV}}\right)^{-5} \left(\frac{\Theta^2}{10^{-8}}\right)^{-1}$$

rino mass and $0\nu\beta\beta$ -decay GERDA 2005 10 / 19

시 프 시 시 프 시 프 네

Two sterile neutrinos ($\mathcal{N} = 2$)—Example

Lightest active neutrino is massless $m_1 = 0$.

• Both N₁ and N₂ are dark matter

$$m_2 + m_3 = \sum_{i=1}^3 \left[\frac{((M^D U)_{1i})^2}{M_1} + \frac{((M^D U)_{2i})^2}{M_2} \right]$$
$$\leq \sum_{i=1}^3 \left[\frac{|M_{1i}^D|^2}{M_1} + \frac{|M_{2i}^D|^2}{M_2} \right] \leq \frac{m_0^2}{1 \text{ keV}} \leq 10^{-5} \text{ eV}$$

Contradicts with $m_3 > 5 \times 10^{-2}$ eV from oscillations

Three sterile neutrinos – one DM

• Only one sterile N₁ is dark matter

$$m_{1} = \frac{((M^{D}U)_{11})^{2}}{M_{1}} + \frac{m_{1}}{m_{2}}\frac{((M^{D}U)_{12})^{2}}{M_{1}} + \frac{m_{1}}{m_{3}}\frac{((M^{D}U)_{13})^{2}}{M_{1}}$$
$$\leq \sum_{i=1}^{3}\frac{|(M^{D})_{1i}|^{2}}{M_{1}} \leq \frac{m_{0}^{2}}{1 \text{ keV}} \sim 10^{-5} \text{ eV}$$

No constraints on the masses m_2 , m_3 and mixings *U* from dark matter in this case.

Baryon Asymmetry

Baryogenesis via Leptogenesis

- Generation of lepton asymmetry in active neutrino sector via CP-violating neutrino oscillations
- Conversion of lepton asymmetry to baryon asymmetry by sphaleron transformations, conserving *B*+*L*

$$\frac{n_B}{s} = 2 \times 10^{-10} \delta_{CP} \left(\frac{10^{-6}}{\Delta M_{32}^2/M_3^2}\right)^{\frac{2}{3}} \left(\frac{M_3}{10 \text{ GeV}}\right)^{\frac{5}{3}}$$

and $M_{2,3} \sim 10$ GeV. δ_{CP} describes CP in sterile sector. In Universe: $\frac{n_B}{s} \simeq (8.8 \div 9.8) \times 10^{-11}$

hep-ph/0505013, T.Asaka, M.Shaposhnikov

Active neutrino masses - prediction!

The mass of the lightest active neutrino:

$0v\beta\beta$ decay

Dark matter constraints: $M_1 \sim 3 \text{ keV}$

$$\begin{split} |\Theta_{e1}|^2 = \left|\frac{(M^D)_{1e}}{M_1}\right|^2 &\leq \frac{m_0^2}{M_1^2} \sim 10^{-8} \\ &\downarrow \\ |M_1 \Theta_{e1}^2| \leq 10^{-5} \text{ eV} \quad \text{Negligible} \end{split}$$

GERDA 2005 15 / 19

▶ < ∃ ▶ ∃|∃</p>

$m_{\beta\beta}$ prediction

- So, $m_{
 m lightest}$ \sim 0 is small
 - Normal hierarchy

$$m_{\beta\beta}^{NH} = \left| \sqrt{\Delta m_{21}^2} \sin^2 \theta_{12} \cos^2 \theta_{13} + \sqrt{|\Delta m_{31}^2|} \sin^2 \theta_{13} e^{-i\alpha_2} \right|$$

Inverted hierarchy

$$m_{\beta\beta}^{lH} = \sqrt{|\Delta m_{31}^2|} \cos^2 \theta_{13} \sqrt{1 - \sin^2 2\theta_{12} \sin^2 \frac{\alpha_2 - \alpha_1}{2}}$$

Here α_1 , α_2 – Majorana phases

GERDA 2005 16 / 19

시 크 시 시 크 시 크 네

$0v\beta\beta$ effective Majorana mass

$0v\beta\beta$ effective Majorana mass

Light Sterile Neutrino Properties

- 2 keV < m < 5 keV</p>
- Lifetime $\tau_{N_1} = 5 \times 10^{26} \text{sec} \left(\frac{M_1}{1 \text{ keV}}\right)^{-5} \left(\frac{\Theta^2}{10^{-8}}\right)^{-1}$
- Mixing with active (electron) neutrinos $|\Theta_{n}|^{2} = |\binom{M^{D}}{1e}|^{2} < \frac{m_{0}^{2}}{2} = 10^{-8}$

$$|\Theta_{e1}|^2 = \left|\frac{(M) f_{e1}}{M_1}\right| \leq \frac{M_0}{M_1^2} \sim 10$$

- Decay modes
 - ► 3v_{active}
 - γVactive
- Possible (or not) ways of detection
 - monochromatic X-ray (at 1–2.5 keV) from dark halos
 - threshold feature in β decay at 2–5 keV from end of electron spectrum, 10⁻⁸ magnitude
 - ▶ additional peak in μ energy in $\pi \rightarrow \mu \nu$ decay, 10⁻⁸ magnitude, 2–5 keV energy difference

Light Sterile Neutrino Properties

- 2 keV < m < 5 keV</p>
- Lifetime $\tau_{N_1} = 5 \times 10^{26} \text{sec} \left(\frac{M_1}{1 \text{ keV}}\right)^{-5} \left(\frac{\Theta^2}{10^{-8}}\right)^{-1}$
- Mixing with active (electron) neutrinos $|\Theta_{e1}|^2 = \left|\frac{(M^D)_{1e}}{M_1}\right|^2 \le \frac{m_0^2}{M_r^2} \sim 10^{-8}$
- Decay modes
 - ► 3v_{active}
 - γVactive
- Possible (or not) ways of detection
 - monochromatic X-ray (at 1–2.5 keV) from dark halos
 - threshold feature in β decay at 2–5 keV from end of electron spectrum, 10⁻⁸ magnitude
 - ▶ additional peak in μ energy in $\pi \rightarrow \mu \nu$ decay, 10⁻⁸ magnitude, 2–5 keV energy difference

Conclusions

Conclusions

- vMSM simplest renormalizable extension of the Standard Model with right-handed neutrinos
- Neutrino oscillation explanation
- All Dark Matter provided by one sterile neutrino
 - For the lightest neutrino is predicted $m_1 \lesssim 10^{-5} \text{ eV}$
 - Majorana mass determined in $0\nu\beta\beta$ decay is predicted $1.3 \times 10^{-3} \text{ eV} < m_{\beta\beta} < 3.4 \times 10^{-3} \text{ eV}$ for normal and $1.3 \times 10^{-2} \text{ eV} < m_{\beta\beta} < 5 \times 10^{-2} \text{ eV}$ for inverse hierarchy.
- Baryon asymmetry also explained

Let us hope that inverse hierarchy is realized in Nature And probably more predictions to follow! Conclusions

Conclusions

- vMSM simplest renormalizable extension of the Standard Model with right-handed neutrinos
- Neutrino oscillation explanation
- All Dark Matter provided by one sterile neutrino
 - For the lightest neutrino is predicted $m_1 \lesssim 10^{-5} \text{ eV}$
 - Majorana mass determined in $0\nu\beta\beta$ decay is predicted $1.3 \times 10^{-3} \text{ eV} < m_{\beta\beta} < 3.4 \times 10^{-3} \text{ eV}$ for normal and $1.3 \times 10^{-2} \text{ eV} < m_{\beta\beta} < 5 \times 10^{-2} \text{ eV}$ for inverse hierarchy.
- Baryon asymmetry also explained

Let us hope that inverse hierarchy is realized in Nature And probably more predictions to follow! Conclusions

Conclusions

- vMSM simplest renormalizable extension of the Standard Model with right-handed neutrinos
- Neutrino oscillation explanation
- All Dark Matter provided by one sterile neutrino
 - For the lightest neutrino is predicted $m_1 \lesssim 10^{-5} \text{ eV}$
 - Majorana mass determined in $0\nu\beta\beta$ decay is predicted $1.3 \times 10^{-3} \text{ eV} < m_{\beta\beta} < 3.4 \times 10^{-3} \text{ eV}$ for normal and $1.3 \times 10^{-2} \text{ eV} < m_{\beta\beta} < 5 \times 10^{-2} \text{ eV}$ for inverse hierarchy.
- Baryon asymmetry also explained

Let us hope that inverse hierarchy is realized in Nature And probably more predictions to follow!

Nucleosynthesis constraints

- DM neutrino not in the thermal equilibrium
- $N_{2,3}$ are in the thermal equilibrium
- they should decay before BBN

*M*_{2,3} > 1 GeV

This with DM constraint leads to bounds on some mixing angles.

▶ < ∃ ▶ ∃|∃</p>

LSND anomaly

- It is impossible to have simultaneously dark matter, BAU, correct neutrino oscillations and LSND neutrino in vMSM.
- However, possible
 - dark matter, correct neutrino oscillations and LSND neutrino. In this case the masses of sterile neutrinos are: 1 eV (LSND), 2÷5 keV (Dark Matter), ~ 1 GeV

or

► BAU, correct neutrino oscillations and LSND neutrino. In this case the masses of sterile neutrinos are: 1 eV (LSND) and 2 degenerate neutrinos with mass ~ 1 GeV (BAU generation).